Related Articles

US-China tech decoupling increases willingness to share personal data in China

Conflicts involving tech companies and data privacy between the US and China have evolved into a technology decoupling between the two countries. Nationalistic sentiments have been on the rise in both countries as well. This study examines how the rising geo-technological race and conflict affect people’s perception of data privacy. In particular, we examine whether reminding Chinese internet users of the US-China technological decoupling influences their willingness to share personal data. We conduct a randomized online experiment where we remind people of the US–China technology competition in artificial intelligence or the US sanctions on Chinese tech companies and examine the impact on respondents’ willingness to share personal data with private companies, the central government and local government. We find that the US-China tech decoupling treatments increase people’s willingness to share their data with private companies. Exploring the heterogeneous treatment effects by gender and education level reveals that nationalism is likely the mediating factor that explains why some people, especially, males and the college educated, are more likely to increase their willingness to share personal data when exposed to these treatments. Moreover, the US-China tech decoupling treatments directly increase people’s perception that data is a key input for Chinese company competitiveness in AI development. In sum, we find that reminding people of the US-China tech decoupling can invoke nationalistic sentiment and increase people’s willingness to share data with private companies and the government in China. The randomized control trial was pre-registered on the AEA RCT Registry (AEARCTR-0007526). The public URL of https://www.socialscienceregistry.org/trials/7526 and the digital object identifier (DOI) is 10.1257/rct.7526-1.0.

Intercity personnel exchange is more effective than policy transplantation at reducing water pollution

Severe spatial disparities exist in water pollution and water governance. A popular solution is that lagging cities transplant policies from cities with successful experiences. However, environmental governance is more than policies. Merely copying policies from elsewhere may not generate intended effects. Here this research argues that intercity personnel exchange can be a more effective policy instrument than policy transplantation. We provide the first nationwide estimates in China of the effect of intercity exchange of city leaders on water pollution reduction. Using large-scale micro-level datasets on city leaders’ curriculum vitae, firm behaviors, patents and policy texts, we show that intercity exchange of city leaders leads to a 4.78–15.26% reduction in firm-level water pollution, which contributes to 39.45–57.98% of the national total water pollution reduction from 2006 to 2013. Exchanged city leaders facilitate the diffusion of governance experience across cities and the formulation of intercity cooperation. They are also more likely to initiate new policies to support industrial upgrading. Our findings highlight the importance and potential of intercity personnel exchange as a policy instrument for water governance in particular and green transition in general.

Perturbations in the microbiota-gut-brain axis shaped by social status loss

Social status is closely linked to physiological and psychological states. Loss of social dominance can lead to brain disorders such as depression, but the underlying mechanisms remain unclear. The gut microbiota can sense stress and contribute to brain disorders via the microbiota-gut-brain axis (MGBA). Here, using a forced loss paradigm to demote dominant mice to subordinate ranks, we find that stress alters the composition and function of the gut microbiota, increasing Muribaculaceae abundance and enhancing butanoate metabolism, and gut microbial depletion resists forced loss-induced hierarchical demotion and behavioral alteration. Single-nucleus transcriptomic analysis of the prefrontal cortex (PFC) indicates that social status loss primarily affected interneurons, altering GABAergic synaptic transmission. Weighted gene co-expression network analysis (WGCNA) reveals modules linked to forced loss in the gut microbiota, colon, PFC, and PFC interneurons, suggesting changes in the PI3K-Akt signaling pathway and the glutamatergic synapse. Our findings provide evidence for MGBA perturbations induced by social status loss, offering potential intervention targets for related brain disorders.

Solar-driven interfacial evaporation technologies for food, energy and water

Solar-driven interfacial evaporation technologies use solar energy to heat materials that drive water evaporation. These technologies are versatile and do not require electricity, which enables their potential application across the food, energy and water nexus. In this Review, we assess the potential of solar-driven interfacial evaporation technologies in food, energy and clean-water production, in wastewater treatment, and in resource recovery. Interfacial evaporation technologies can produce up to 5.3 l m–2 h−1 of drinking water using sunlight as the energy source. Systems designed for food production in coastal regions desalinate water to irrigate crops or wash contaminated soils. Technologies are being developed to simultaneously produce both clean energy and water through interfacial evaporation and have reached up to 204 W m–2 for electricity and 2.5 l m–2 h–1 for water in separate systems. Other solar evaporation approaches or combinations of approaches could potentially use the full solar spectrum to generate multiple products (such as water, food, electricity, heating or cooling, and/or fuels). In the future, solar evaporation technologies could aid in food, energy and water provision in low-resource or rural settings that lack reliable access to these essentials, but the systems must first undergo rigorous, scaled-up field testing to understand their performance, stability and competitiveness.

Impact of green bonds on CO2 emissions and disaggregated level renewable electricity in China and the United States of America

Green financial products have emerged that can benefit economic actors in financing green initiatives to promote renewable energy and enable carbon neutrality. Against this backdrop, the study examines the impact of green bonds (GBs) on carbon dioxide (CO2) emissions and renewable electricity generation (EG) in China and the USA, the leading countries in terms of GB issuance and CO2 emissions. To this end, the study conducts a disaggregated-level analysis by applying novel nonlinear quantile methods between January 2, 2019, and July 31, 2023. The results demonstrate that at higher quantiles; (i) GBs mainly have a dampening impact on CO2 emissions from the transportation sector in China and the USA; (ii) GBs have a stimulating impact on solar and wind EG in China; (iii) GBs have a diminishing impact on all types of EGs in the USA. Thus, GBs have an impact on carbon neutrality and renewable energy, which differs by quantiles, sectors, and EG sources. Accordingly, various policy implications are discussed in terms of further contributions of GBs to carbon neutrality and renewable energy in China and the USA.

Responses

Your email address will not be published. Required fields are marked *