Related Articles
Fast adaptive optics for high-dimensional quantum communications in turbulent channels
Quantum Key Distribution (QKD) promises a provably secure method to transmit information from one party to another. Free-space QKD allows for this information to be sent over great distances and in places where fibre-based communications cannot be implemented, such as ground-satellite. The primary limiting factor for free-space links is the effect of atmospheric turbulence, which can result in significant error rates and increased losses in QKD channels. Here, we employ the use of a high-speed Adaptive Optics (AO) system to make real-time corrections to the wavefront distortions on spatial modes that are used for high-dimensional QKD in our turbulent channel. First, we demonstrate the effectiveness of the AO system in improving the coupling efficiency of a Gaussian mode that has propagated through turbulence. Through process tomography, we show that our system is capable of significantly reducing the crosstalk of spatial modes in the channel. Finally, we show that employing AO reduces the quantum dit error rate for a high-dimensional orbital angular momentum-based QKD protocol, allowing for secure communication in a channel where it would otherwise be impossible. These results are promising for establishing long-distance free-space QKD systems.
Light-matter coupling via quantum pathways for spontaneous symmetry breaking in van der Waals antiferromagnetic semiconductors
Light-matter interaction simultaneously alters both the original material and incident light. Light not only reveals material details but also activates coupling mechanisms. The coupling has been demonstrated mechanically, for instance, through the patterning of metallic antennas, resulting in the emergence of plasmonic quasiparticles and enabling wavefront engineering of light via the generalized Snell’s law. However, quantum-mechanical light-matter interaction, wherein photons coherently excite distinct quantum pathways, remains poorly understood. Here, we report on quantum interference between light-induced quantum pathways through the orbital quantum levels and spin continuum. The quantum interference immediately breaks the symmetry of the hexagonal antiferromagnetic semiconductor FePS3. Below the Néel temperature, we observe the emergence of birefringence and linear dichroism, namely, quantum anisotropy due to quantum interference, which is further enhanced by the thickness effect. We explain the direct relevance of the quantum anisotropy to a quantum phase transition by spontaneous symmetry breaking in Mexican hat potential. Our findings suggest material modulation via selective quantum pathways through quantum light-matter interaction.
Dynamic thermalization on noisy quantum hardware
Emulating thermal observables on a digital quantum computer is essential for quantum simulation of many-body physics. However, thermalization typically requires a large system size due to incorporating a thermal bath, whilst limited resources of near-term digital quantum processors allow for simulating relatively small systems. We show that thermal observables and fluctuations may be obtained for a small closed system without a thermal bath. Thermal observables occur upon classically averaging quantum mechanical observables over randomized variants of their time evolution that run independently on a digital quantum processor. Using an IBM quantum computer, we experimentally find thermal occupation probabilities with finite positive and negative temperatures defined by the initial state’s energy. Averaging over random evolutions facilitates error mitigation, with the noise contributing to the temperature in the simulated observables. This result fosters probing the dynamical emergence of equilibrium properties of matter at finite temperatures on noisy intermediate-scale quantum hardware.
Collective quantum enhancement in critical quantum sensing
Critical systems represent a valuable resource in quantum sensing and metrology. Critical quantum sensing (CQS) protocols can be realized using finite-component phase transitions, where criticality arises from the rescaling of system parameters rather than the thermodynamic limit. Here, we show that a collective quantum advantage can be achieved in a multipartite CQS protocol using a chain of parametrically coupled critical resonators in the weak-nonlinearity limit. We derive analytical solutions for the low-energy spectrum of this unconventional quantum many-body system, which is composed of locally critical elements. We then assess the scaling of the quantum Fisher information with respect to fundamental resources. We demonstrate that the coupled chain outperforms an equivalent ensemble of independent critical sensors, achieving quadratic scaling in the number of resonators. Finally, we show that even with finite Kerr nonlinearity or Markovian dissipation, the critical chain retains its advantage, making it relevant for implementing quantum sensors with current microwave superconducting technologies.
Observation of non-Hermitian topological synchronization
Non-Hermitian topology plays a pivotal role in physical science and technology, exerting a profound impact across various scientific disciplines. Recently, the interplay between topological physics and nonlinear synchronization has aroused a great interest, leading to the emergence of an intriguing phenomenon known as topological synchronization, wherein nonlinear oscillators at boundaries synchronize through topological boundary states. To the best of our knowledge, however, this phenomenon has yet to be experimentally validated, and the study of non-Hermitian topological synchronization remains in its infancy. Here, we investigate non-Hermitian topological synchronization, uncovering the influence of system size and boundary site geometry on synchronization effects. We demonstrate that simply varying the lattice size allows transitions between three distinct types of non-Hermitian topological synchronization. Furthermore, we reveal that the geometry of the boundary sites introduces a degree of freedom, enabling the control over the configuration of non-Hermitian topological synchronization. These findings are experimentally validated using non-Hermitian nonlinear topological circuits. This work significantly broadens the scope of nonlinear non-Hermitian topological physics and opens new avenues for the application of synchronization phenomena in future technologies.
Responses