Related Articles
Fast adaptive optics for high-dimensional quantum communications in turbulent channels
Quantum Key Distribution (QKD) promises a provably secure method to transmit information from one party to another. Free-space QKD allows for this information to be sent over great distances and in places where fibre-based communications cannot be implemented, such as ground-satellite. The primary limiting factor for free-space links is the effect of atmospheric turbulence, which can result in significant error rates and increased losses in QKD channels. Here, we employ the use of a high-speed Adaptive Optics (AO) system to make real-time corrections to the wavefront distortions on spatial modes that are used for high-dimensional QKD in our turbulent channel. First, we demonstrate the effectiveness of the AO system in improving the coupling efficiency of a Gaussian mode that has propagated through turbulence. Through process tomography, we show that our system is capable of significantly reducing the crosstalk of spatial modes in the channel. Finally, we show that employing AO reduces the quantum dit error rate for a high-dimensional orbital angular momentum-based QKD protocol, allowing for secure communication in a channel where it would otherwise be impossible. These results are promising for establishing long-distance free-space QKD systems.
Light-matter coupling via quantum pathways for spontaneous symmetry breaking in van der Waals antiferromagnetic semiconductors
Light-matter interaction simultaneously alters both the original material and incident light. Light not only reveals material details but also activates coupling mechanisms. The coupling has been demonstrated mechanically, for instance, through the patterning of metallic antennas, resulting in the emergence of plasmonic quasiparticles and enabling wavefront engineering of light via the generalized Snell’s law. However, quantum-mechanical light-matter interaction, wherein photons coherently excite distinct quantum pathways, remains poorly understood. Here, we report on quantum interference between light-induced quantum pathways through the orbital quantum levels and spin continuum. The quantum interference immediately breaks the symmetry of the hexagonal antiferromagnetic semiconductor FePS3. Below the Néel temperature, we observe the emergence of birefringence and linear dichroism, namely, quantum anisotropy due to quantum interference, which is further enhanced by the thickness effect. We explain the direct relevance of the quantum anisotropy to a quantum phase transition by spontaneous symmetry breaking in Mexican hat potential. Our findings suggest material modulation via selective quantum pathways through quantum light-matter interaction.
Dynamic thermalization on noisy quantum hardware
Emulating thermal observables on a digital quantum computer is essential for quantum simulation of many-body physics. However, thermalization typically requires a large system size due to incorporating a thermal bath, whilst limited resources of near-term digital quantum processors allow for simulating relatively small systems. We show that thermal observables and fluctuations may be obtained for a small closed system without a thermal bath. Thermal observables occur upon classically averaging quantum mechanical observables over randomized variants of their time evolution that run independently on a digital quantum processor. Using an IBM quantum computer, we experimentally find thermal occupation probabilities with finite positive and negative temperatures defined by the initial state’s energy. Averaging over random evolutions facilitates error mitigation, with the noise contributing to the temperature in the simulated observables. This result fosters probing the dynamical emergence of equilibrium properties of matter at finite temperatures on noisy intermediate-scale quantum hardware.
Collective quantum enhancement in critical quantum sensing
Critical systems represent a valuable resource in quantum sensing and metrology. Critical quantum sensing (CQS) protocols can be realized using finite-component phase transitions, where criticality arises from the rescaling of system parameters rather than the thermodynamic limit. Here, we show that a collective quantum advantage can be achieved in a multipartite CQS protocol using a chain of parametrically coupled critical resonators in the weak-nonlinearity limit. We derive analytical solutions for the low-energy spectrum of this unconventional quantum many-body system, which is composed of locally critical elements. We then assess the scaling of the quantum Fisher information with respect to fundamental resources. We demonstrate that the coupled chain outperforms an equivalent ensemble of independent critical sensors, achieving quadratic scaling in the number of resonators. Finally, we show that even with finite Kerr nonlinearity or Markovian dissipation, the critical chain retains its advantage, making it relevant for implementing quantum sensors with current microwave superconducting technologies.
Seasonal productivity of the equatorial Atlantic shaped by distinct wind-driven processes
The eastern equatorial Atlantic hosts a productive marine ecosystem that depends on upward supply of nitrate, the primary limiting nutrient in this region. The annual productivity peak, indicated by elevated surface chlorophyll levels, occurs in the Northern Hemisphere summer, roughly coinciding with strengthened easterly winds. For enhanced productivity in the equatorial Atlantic, nitrate-rich water must rise into the turbulent layer above the Equatorial Undercurrent. Using data from two trans-Atlantic equatorial surveys, along with extended time series from equatorial moorings, we demonstrate how three independent wind-driven processes shape the seasonality of equatorial Atlantic productivity: (1) the nitracline shoals in response to intensifying easterly winds; (2) the depth of the Equatorial Undercurrent core, defined by maximum eastward velocity, is controlled by an annual oscillation of basin-scale standing equatorial waves; and (3) mixing intensity in the shear zone above the Equatorial Undercurrent core is governed by local and instantaneous winds. The interplay of these three mechanisms shapes a unique seasonal cycle of nutrient supply and productivity in the equatorial Atlantic, with a productivity minimum in April due to a shallow Equatorial Undercurrent and a productivity maximum in July resulting from a shallow nitracline coupled with enhanced mixing.
Responses