Related Articles
An Integrative lifecycle design approach based on carbon intensity for renewable-battery-consumer energy systems
Driven by sustainable development goals and carbon neutrality worldwide, demands for both renewable energy and storage systems are constantly increasing. However, the lack of an appropriate approach without considering renewable intermittence and demand stochasticity will lead to capacity oversizing or undersizing. In this study, an optimal design approach is proposed for integrated photovoltaic-battery-consumer energy systems in the form of a m2-kWp-kWh relationship in both centralized and distributed formats. Superiorities of the proposed matching degree approach are compared with the traditional uniformity approach, in photovoltaic capacity, battery capacity, net present value and lifecycle carbon intensity. Results showed that the proposed method is superior to the traditional approach with higher net present value and lower carbon intensity. Furthermore, the proposed method can be scaled and applied to guide the design of photovoltaic-battery-consumer energy systems in different climate zones, promoting sustainable development and carbon neutrality globally.
Nanomolar inhibitor of the galectin-8 N-terminal domain binds via a non-canonical cation-π interaction
Galectin-8 is a tandem-repeat galectin consisting of two distinct carbohydrate recognition domains and is a potential drug target. We have developed a library of galectin-8N inhibitors that exhibit high nanomolar Kd values as determined by a competitive fluorescence polarization assay. A detailed thermodynamic analysis of the binding of d-galactosides to galectin-8N by isothermal titration calorimetry reveals important differences in enthalpic and/or entropic contributions to binding. Contrary to expectations, the binding of 2-O-propargyl-d-galactoside was found to strongly increase the binding enthalpy, whereas the binding of 2-O-carboxymethylene-d-galactoside was surprisingly less enthalpy-driven. The results of our work suggest that the ethynyl group can successfully replace the carboxylate group when targeting the water-exposed guanidine moiety of a critical arginine residue. This results in only a minor loss of affinity and an adjusted enthalpic contribution to the overall binding due to non-canonical cation-π interactions, as evidenced by the obtained crystal structure of 2-O-propargyl-d-galactoside in complex with the N-terminal domain of galectin-8. Such an interaction has neither been identified nor discussed to date in a small-molecule ligand-protein complex.
Air, surface, and wastewater surveillance of SARS-CoV-2; a multimodal evaluation of COVID-19 detection in a built environment
Environmental surveillance of infectious organisms holds tremendous promise to reduce human-to-human transmission in indoor spaces through early detection.
Emotions and individual differences shape human foraging under threat
A common behavior in natural environments is foraging for rewards. However, this is often in the presence of predators. Therefore, one of the most fundamental decisions for humans, as for other animals, is how to apportion time between reward-motivated pursuit behavior and threat-motivated checking behavior. To understand what affects how people strike this balance, we developed an ecologically inspired task and looked at both within-participant dynamics (moods) and between-participant individual differences (questionnaires about real-life behaviors) in two large internet samples (n = 374 and n = 702) in a cross-sectional design. For the within-participant dynamics, we found that people regulate task-evoked stress homeostatically by changing behavior (increasing foraging and hiding). Individual differences, even in superficially related traits (apathy–anhedonia and anxiety–compulsive checking) reliably mapped onto unique behaviors. Worse task performance, due to maladaptive checking, was linked to gender (women checked excessively) and specific anxiety-related traits: somatic anxiety (reduced self-reported checking due to worry) and compulsivity (self-reported disorganized checking). While anhedonia decreased self-reported task engagement, apathy, strikingly, improved overall task performance by reducing excessive checking. In summary, we provide a multifaceted paradigm for assessment of checking for threat in a naturalistic task that is sensitive to both moods as they change throughout the task and clinical dimensions. Thus, it could serve as an objective measurement tool for future clinical studies interested in threat, vigilance or behavior–emotion interactions in contexts requiring both reward seeking and threat avoidance.
Optofluidic paper-based analytical device for discriminative detection of organic substances via digital color coding
Developing a portable yet affordable method for the discrimination of chemical substances with good sensitivity and selectivity is essential for on-site visual detection of unknown substances. Herein, we propose an optofluidic paper-based analytical device (PAD) that consists of a macromolecule-driven flow (MDF) gate and photonic crystal (PhC) coding units, enabling portable and scalable detection and discrimination of various organic chemical, mimicking the olfactory system. The MDF gate is designed for precise flow control of liquid analytes, which depends on intermolecular interactions between the polymer at the MDF gate and the liquid analytes. Subsequently, the PhC coding unit allows for visualizing the result obtained from the MDF gate and generating differential optical patterns. We fabricate an optofluidic PAD by integrating two coding units into a three-dimensional (3D) microfluidic paper within a 3D-printed cartridge. The optofluidic PADs clearly distinguish 11 organic chemicals with digital readout of pattern recognition from colorimetric signals. We believe that our optofluidic coding strategy mimicking the olfactory system opens up a wide range of potential applications in colorimetric monitoring of chemicals observed in environment.
Responses