Related Articles

Improved radicchio seedling growth under CsPbI3 perovskite rooftop in a laboratory-scale greenhouse for Agrivoltaics application

Agrivoltaics, integrating photovoltaic systems with crop cultivation, demands semitransparent solar modules to mitigate soil shadowing. Perovskite Solar Cells (PSC) offer competitive efficiency, low fabrication costs, and high solar transmittance, making them suitable for agrivoltaic applications. However, the impact of PSC light filtering on plant growth and transcriptomics remains underexplored. This study investigates the viability and agronomic implications of the growth of radicchio seedlings (Cichorium intybus var. latifolium) in laboratory-scale greenhouses integrating Perovskites-coated rooftops. Eu-enriched CsPbI3 layers are chosen to provide semi-transparency and phase stability while radicchio has limited size and grows in pots. Despite the reduced light exposure, radicchio seedlings exhibit faster growth and larger leaves than in the reference, benefiting from specific spectral filtering. RNA-sequencing reveals differential gene expression patterns reflecting adaptive responses to environmental changes. Simulations of full PSC integration demonstrate a positive energy balance in greenhouses to cover annual energy needs for lighting, irrigation, and air conditioning.

Fluorine-modified passivator for efficient vacuum-deposited pure-red perovskite light-emitting diodes

Vacuum-deposited perovskite light-emitting diodes (PeLEDs) have demonstrated significant potential for high-color-gamut active-matrix displays. Despite the rapid advance of green PeLEDs, red ones remain a considerable challenge because of the inferior photophysical properties of vacuum-deposited red-light-emitting materials. Here, a rationally designed fluorine-modified phosphine oxide additive was introduced to in-situ passivate vacuum-deposited perovskites. The highly polar 2-F-TPPO incorporated perovskite films demonstrated enhanced photoluminescence quantum yield (PLQY), suppressed defects, and improved crystallinity. When implemented as active layers in PeLEDs, an external quantum efficiency (EQE) of 12.6% with an emission wavelength of 640 nm is achieved, which was 6 times higher compared to the previously reported most efficient vacuum-deposited red PeLEDs (EQE below 2%). Our findings lay the foundations for the further exploration of high-performance vacuum-deposited PeLEDs toward full-color perovskite displays.

Surfactant-induced hole concentration enhancement for highly efficient perovskite light-emitting diodes

It is widely acknowledged that constructing small injection barriers for balanced electron and hole injections is essential for light-emitting diodes (LEDs). However, in highly efficient LEDs based on metal halide perovskites, a seemingly large hole injection barrier is usually observed. Here we rationalize this high efficiency through a surfactant-induced effect where the hole concentration at the perovskite surface is enhanced to enable sufficient bimolecular recombination pathways with injected electrons. This effect originates from the additive engineering and is verified by a series of optical and electrical measurements. In addition, surfactant additives that induce an increased hole concentration also significantly improve the luminescence yield, an important parameter for the efficient operation of perovskite LEDs. Our results not only provide rational design rules to fabricate high-efficiency perovskite LEDs but also present new insights to benefit the design of other perovskite optoelectronic devices.

Coastal wetland resilience through local, regional and global conservation

Coastal wetlands, including tidal marshes, mangrove forests and tidal flats, support the livelihoods of millions of people. Understanding the resilience of coastal wetlands to the increasing number and intensity of anthropogenic threats (such as habitat conversion, pollution, fishing and climate change) can inform what conservation actions will be effective. In this Review, we synthesize anthropogenic threats to coastal wetlands and their resilience through the lens of scale. Over decades and centuries, anthropogenic threats have unfolded across local, regional and global scales, reducing both the extent and quality of coastal wetlands. The resilience of existing coastal wetlands is driven by their quality, which is modulated by both physical conditions (such as sediment supply) and ecological conditions (such as species interactions operating from local through to global scales). Protection and restoration efforts, however, are often localized and focus on the extent of coastal wetlands. The future of coastal wetlands will depend on an improved understanding of their resilience, and on society’s actions to enhance both their extent and quality across different scales.

Promises and challenges of indoor photovoltaics

Indoor photovoltaics (IPVs) harvest ambient light to produce electricity and can cleanly power the rapidly growing number of Internet-of-Things (IoT) sensors. The surge in IPV development, with new proposed materials, devices and products, creates the need to critically evaluate how IPV devices have advanced and to assess their prospects. In this Review, we analyse the status, challenges and opportunities of established and emerging IPV technologies, including metal-halide perovskite, organic photovoltaics, dye-sensitized solar cell and perovskite-inspired materials. Many emerging low-toxicity semiconductor materials could reach IPV efficiencies of up to 50%, but carrier localization and defect trapping hinder their performance. Wide adoption of standardized performance assessment methods is essential, and further harmonization is needed for stress tests, qualification standards and energy rating assessments. For seamless IPV integration in IoT devices, series-connected cell modules and appropriate power management hardware are crucial to maximize energy extraction. IPV device stability, technology upscaling and cost-effective integration in IoT sensors must be further developed but balanced with sustainability across the entire value chain.

Responses

Your email address will not be published. Required fields are marked *