Related Articles
Unraveling the dynamics of magnetization in topological insulator-ferromagnet heterostructures via spin-orbit torque
Spin–orbit coupling is a relativistic effect coupling the orbital angular momentum with the spin, which determines the physical properties of condensed matter. For instance, the spin–orbit coupling strongly influences spin dynamics, opening the possibility for promising applications. The topological insulator–ferromagnet heterostructure is a typical example exhibiting spin dynamics driven by current-induced spin–orbit torque. Recent observations of the sign flip of Hall conductivity imply that the spin–orbit torque is strong enough to flip magnetization within this heterostructure. Motivated by this, our study elucidates the conditions governing spin flips by studying the magnetization dynamics. We establish that the interplay between spin-anisotropy and spin–orbit torque plays a crucial role in the magnetization dynamics. Furthermore, we categorize various modes of magnetization dynamics, constructing a comprehensive phase diagram across distinct energy scales, damping constants, and applied frequencies. We also consider the effect of a magnetic field on the magnetization dynamics. This research not only offers insights into controlling spin direction but also charts a new pathway to the practical application of spin–orbit coupled systems.
Pathogenesis of aquatic bird bornavirus 1 in turkeys of different age
Aquatic bird bornavirus 1 (ABBV1), an orthobornavirus in the family Bornaviridae, displays a broad host range among avian species, including poultry. The pathogenesis of orthobornaviruses, at least in mammals and psittacines, appears to be mediated by the host immune response against the infected nervous tissue, with younger animals showing a milder disease due to immune tolerance. Here, we tested the ability of ABBV1 to infect domestic turkeys (Meleagris gallopavo), with a focus on evaluating the impact of age at infection. Cohorts of 6-week-old (old) and day-old (young) male turkeys were divided into virus-inoculated and control groups, and kept for up to 12 weeks. Results showed that turkeys of both ages were susceptible to ABBV1 infection by intramuscular administration, following a centripetal and limited centrifugal spread, although infection appeared delayed in old compared to young birds. Notably, only young turkeys developed clinical signs and more frequent inflammation of the central nervous system, indicating that infection at a very early age is unlikely to induce tolerance to ABBV1 infection.
Brainstem serotonin amplifies nociceptive transmission in a mouse model of Parkinson’s disease
Parkinson’s disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson’s disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson’s disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation. Mice exhibited mechanical hypersensitivity associated with hyperexcitability of neurons in the dorsal horn of the spinal cord (DHSC). Serotonin (5-HT) levels increased in the spinal cord, correlating with reduced tyrosine hydroxylase (TH) immunoreactivity in the nucleus raphe magnus (NRM) and increased excitability of 5-HT neurons. Selective optogenetic inhibition of 5-HT neurons attenuated mechanical hypersensitivity and reduced DHSC hyperexcitability. In addition, the blockade of 5-HT2A and 5-HT3 receptors reduced mechanical hypersensitivity. These results reveal, for the first time, that PD-like dopamine depletion triggers spinal-mediated mechanical hypersensitivity, associated with serotonergic hyperactivity in the NRM, opening up new therapeutic avenues for Parkinson’s disease-associated pain targeting the serotonergic systems.
Different types of cell death and their interactions in myocardial ischemia–reperfusion injury
Myocardial ischemia–reperfusion (I/R) injury is a multifaceted process observed in patients with coronary artery disease when blood flow is restored to the heart tissue following ischemia-induced damage. Cardiomyocyte cell death, particularly through apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, is pivotal in myocardial I/R injury. Preventing cell death during the process of I/R is vital for improving ischemic cardiomyopathy. These multiple forms of cell death can occur simultaneously, interact with each other, and contribute to the complexity of myocardial I/R injury. In this review, we aim to provide a comprehensive summary of the key molecular mechanisms and regulatory patterns involved in these five types of cell death in myocardial I/R injury. We will also discuss the crosstalk and intricate interactions among these mechanisms, highlighting the interplay between different types of cell death. Furthermore, we will explore specific molecules or targets that participate in different cell death pathways and elucidate their mechanisms of action. It is important to note that manipulating the molecules or targets involved in distinct cell death processes may have a significant impact on reducing myocardial I/R injury. By enhancing researchers’ understanding of the mechanisms and interactions among different types of cell death in myocardial I/R injury, this review aims to pave the way for the development of novel interventions for cardio-protection in patients affected by myocardial I/R injury.
Intermittent fasting as a treatment for obesity in young people: a scoping review
Intermittent fasting focuses on the timing of eating rather than diet quality or energy intake, with evidence supporting its effects on weight loss and improvements in cardiometabolic outcomes in adults with obesity. However, there is limited evidence for its feasibility and efficacy in young people. To address this, a scoping review was conducted to examine intermittent fasting regimens in individuals aged 10 to 25 for the treatment of obesity focusing on methodology, intervention parameters, outcomes, adherence, feasibility, and efficacy. Due to the paucity of evidence in this age group, to adequately assess feasibility and adherence, all published studies of intermittent fasting in this age category, regardless of weight status and treatment intention, were included in the review. The review included 34 studies (28 interventional studies and 6 observational studies) with 893 participants aged 12 to 25. Interventions varied with 9 studies in cohorts with obesity utilizing intermittent fasting as an obesity treatment. Thirteen studies utilized 8-h time-restricted eating. Primary outcomes included cardiometabolic risk factors (7/28), anthropometric measurements (7/28), body composition (5/28), muscular performance (4/28), feasibility (1/28), and others (4/28). All 9 studies conducted in young people with obesity reported some degree of weight loss, although the comparator groups varied significantly. This review underscores the various utilizations of intermittent fasting in this age group and highlights its potential in treating obesity. However, the findings emphasize the need for rigorous studies with standardized frameworks for feasibility to ensure comparability and determine intermittent fasting’s practicality in this age group depending on the treatment outcome of interest.
Responses