Related Articles
An axis-specific mitral annuloplasty ring eliminates mitral regurgitation allowing mitral annular motion in an ovine model
Current mitral annuloplasty rings fail to restrict the anteroposterior distance while allowing dynamic mitral annular changes. We designed and manufactured a mitral annuloplasty ring that demonstrated axis-specific, selective flexibility to meet this clinical need. The objectives were to evaluate ex vivo biomechanics of this ring and to validate the annular dynamics and safety after ring implantation in vivo.
A comprehensive review of KCC-1 fibrous silica for water treatment
The growing global demand for freshwater necessitates advanced water treatment technologies. This review highlights the application of fibrous silica spheres, KCC-1, in water remediation, focusing on the removal of heavy metals and organic dyes. KCC-1’s unique fibrous morphology, high surface area, and physicochemical properties make it a promising adsorbent. This work examines its synthesis, modifications, and advantages, providing insights into optimizing KCC-1-based adsorbents for sustainable water treatment.
Metal organic frameworks for wastewater treatment, renewable energy and circular economy contributions
Metal-Organic Frameworks (MOFs) are versatile materials with tailorable structures, high surface areas, and controlled pore sizes, making them ideal for gas storage, separation, catalysis, and notably wastewater treatment by removing pollutants like antibiotics and heavy metals. Functionalization enhances their applications in energy conversion and environmental remediation. Despite challenges like stability and cost, ongoing innovation in MOFs contributes to the circular economy and aligns with Sustainable Development Goals.
Anion vacancies activate N2 to ammonia on Ba–Si orthosilicate oxynitride-hydride
Anion vacancies on metal oxide surfaces have been studied as either active sites or promoting sites in various chemical reactions involving oxidation/reduction processes. However, oxide materials rarely work effectively as catalysts in the absence of transition metal sites. Here we report a Ba–Si orthosilicate oxynitride–hydride as a transition-metal-free catalyst for efficient ammonia synthesis via an anion-vacancy–mediated mechanism. The facile desorption of H− and N3− anions plus the flexibility of the crystal structure can accommodate a high density of electrons at vacancy sites, where N2 can be captured and directly activated to ammonia through hydrogenation processes. The ammonia synthesis rates reach 40.1 mmol g−1 h−1 at 300 °C by loading ruthenium nanoparticles. Although not found to dissociate N2, Ru instead facilitates the formation of anion vacancies at the Ru–support interface. This demonstrates a new route for anion-vacancy–mediated heterogeneous catalysis.
Flash Joule heating for synthesis, upcycling and remediation
Electric heating methods are being developed and used to electrify industrial applications and lower their carbon emissions. Direct Joule resistive heating is an energy-efficient electric heating technique that has been widely tested at the bench scale and could replace some energy-intensive and carbon-intensive processes. In this Review, we discuss the use of flash Joule heating (FJH) in processes that are traditionally energy-intensive or carbon-intensive. FJH uses pulse current discharge to rapidly heat materials directly to a desired temperature; it has high-temperature capabilities (>3,000 °C), fast heating and cooling rates (>102 °C s−1), short duration (milliseconds to seconds) and high energy efficiency (~100%). Carbon materials and metastable inorganic materials can be synthesized using FJH from virgin materials and waste feedstocks. FJH is also applied in resource recovery (such as from e-waste) and waste upcycling. An emerging application is in environmental remediation, where FJH can be used to rapidly degrade perfluoroalkyl and polyfluoroalkyl substances and to remove or immobilize heavy metals in soil and solid wastes. Life-cycle and technoeconomic analyses suggest that FJH can reduce energy consumption and carbon emissions and be cost-efficient compared with existing methods. Bringing FJH to industrially relevant scales requires further equipment and engineering development.
Responses