Related Articles

Genome-wide analysis identifies novel shared loci between depression and white matter microstructure

Depression, a complex and heritable psychiatric disorder, is associated with alterations in white matter microstructure, yet their shared genetic basis remains largely unclear. Utilizing the largest available genome-wide association study (GWAS) datasets for depression (N = 674,452) and white matter microstructure (N = 33,224), assessed through diffusion tensor imaging metrics such as fractional anisotropy (FA) and mean diffusivity (MD), we employed linkage disequilibrium score regression method to estimate global genetic correlations, local analysis of [co]variant association approach to pinpoint genomic regions with local genetic correlations, and conjunctional false discovery rate analysis to identify shared variants. Our findings revealed that depression showed significant local genetic correlations with FA in 37 genomic regions and with MD in 59 regions, while global genetic correlations were weak. Variant-level analysis identified 78 distinct loci jointly associated with depression (25 novel loci) and FA (35 novel loci), and 41 distinct loci associated with depression (17 novel loci) and MD (25 novel loci). Further analyses showed that these shared loci exhibited both concordant and discordant effect directions between depression and white matter traits, as well as distinct yet overlapping hemispheric patterns in their genetic architecture. Enrichment analysis of these shared loci implicated biological processes related to metabolism and regulation. This study provides evidence of a mixed-direction shared genetic architecture between depression and white matter microstructure. The identification of specific loci and pathways offers potential insights for developing targeted interventions to improve white matter integrity and alleviate depressive symptoms.

Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects

The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.

Genome-wide association study meta-analysis provides insights into the etiology of heart failure and its subtypes

Heart failure (HF) is a major contributor to global morbidity and mortality. While distinct clinical subtypes, defined by etiology and left ventricular ejection fraction, are well recognized, their genetic determinants remain inadequately understood. In this study, we report a genome-wide association study of HF and its subtypes in a sample of 1.9 million individuals. A total of 153,174 individuals had HF, of whom 44,012 had a nonischemic etiology (ni-HF). A subset of patients with ni-HF were stratified based on left ventricular systolic function, where data were available, identifying 5,406 individuals with reduced ejection fraction and 3,841 with preserved ejection fraction. We identify 66 genetic loci associated with HF and its subtypes, 37 of which have not previously been reported. Using functionally informed gene prioritization methods, we predict effector genes for each identified locus, and map these to etiologic disease clusters through phenome-wide association analysis, network analysis and colocalization. Through heritability enrichment analysis, we highlight the role of extracardiac tissues in disease etiology. We then examine the differential associations of upstream risk factors with HF subtypes using Mendelian randomization. These findings extend our understanding of the mechanisms underlying HF etiology and may inform future approaches to prevention and treatment.

Age-dependent differences in breast tumor microenvironment: challenges and opportunities for efficacy studies in preclinical models

Immunity suffers a function deficit during aging, and the incidence of cancer is increased in the elderly. However, most cancer models employ young mice, which are poorly representative of adult cancer patients. We have previously reported that Triple-Therapy (TT), involving antigen-presenting-cell activation by vinorelbine and generation of TCF1+-stem-cell-like T cells (scTs) by cyclophosphamide significantly improved anti-PD-1 efficacy in anti-PD1-resistant models like Triple-Negative Breast Cancer (TNBC) and Non-Hodgkin’s Lymphoma (NHL), due to T-cell-mediated tumor killing. Here, we describe the effect of TT on TNBC growth and on tumor-microenvironment (TME) of young (6–8w, representative of human puberty) versus adult (12 m, representative of 40y-humans) mice. TT-efficacy was similar in young and adults, as CD8+ scTs were only marginally reduced in adults. However, single-cell analyses revealed major differences in the TME: adults had fewer CD4+ scTs, B-naïve and NK-cells, and more memory-B-cells. Cancer-associated-fibroblasts (CAF) with an Extracellular Matrix (ECM) deposition-signature (Matrix-CAFs) were more common in young mice, while pro-inflammatory stromal populations and myofibroblasts were more represented in adults. Matrix-CAFs in adult mice displayed decreased ECM-remodeling abilities, reduced collagen deposition, and a different pattern of interactions with the other cells of the TME. Taken together, our results suggest that age-dependent differences in the TME should be considered when designing preclinical studies.

Heart regeneration from the whole-organism perspective to single-cell resolution

Cardiac regenerative potential in the animal kingdom displays striking divergence across ontogeny and phylogeny. Here we discuss several fundamental questions in heart regeneration and provide both a holistic view of heart regeneration in the organism as a whole, as well as a single-cell perspective on intercellular communication among diverse cardiac cell populations. We hope to provide valuable insights that advance our understanding of organ regeneration and future therapeutic strategies.

Responses

Your email address will not be published. Required fields are marked *