Related Articles

Insufficient expression of COL6A1 promotes the development of early-onset severe preeclampsia by inhibiting the APJ/AKT signaling pathway

Early-onset severe preeclampsia (eosPE) is one of the most severe complications of pregnancy. To identify the genes related to the development of eosPE. We downloaded and integrated analyzed microarray data from GSE44711, GSE66273, and GSE74341, which contains the expression profile of placental tissues from patients with eosPE and healthy controls. Our analysis revealed that collagen type VI alpha 1 (COL6A1) was downregulated in the eosPE placenta compared to normal pregnancy. COL6A1 promoted the migration, invasion and tube formation ability of HTR8/SVneo cells, HUVECs and primary extravillous trophoblasts (EVTs). To explore the underlying mechanisms, we conducted transcriptome sequencing, which indicated that the Apelin/APJ signaling pathway was affected by COL6A1 knockdown. In addition, we found that APJ expression was lower in the placental tissue of patients with eosPE compared to healthy pregnancies. Inhibition of APJ suppressed the invasion, migration, and tube formation abilities of trophoblasts. We also observed that COL6A1 increased the levels of p-AKT and p-mTOR, while the APJ inhibitor ML221 impaired this effect. Furthermore, transwell and tube formation assays demonstrated that ML221 attenuated the capabilities enhanced by COL6A1, an effect that could be rescued by the AKT activator SC79. Overall, these findings indicate that insufficient expression of COL6A1 attenuates the migration, invasion, and endothelial-like tube formation of HTR8/SVneo cells and primary EVTs via the APJ/AKT/mTOR pathway, thereby promoting the development of eosPE.

Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects

The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.

Inhibition of sympathetic tone via hypothalamic descending pathway propagates glucocorticoid-induced endothelial impairment and osteonecrosis of the femoral head

Osteonecrosis of the femoral head (ONFH) is a common complication of glucocorticoid (GC) therapy. Recent advances demonstrate that sympathetic nerves regulate bone homeostasis, and GCs lower the sympathetic tone. Here, we show that the dramatically decreased sympathetic tone is closely associated with the pathogenesis of GC-induced ONFH. GCs activate the glucocorticoid receptor (GR) but hinder the activation of the mineralocorticoid receptor (MR) on neurons in the hypothalamic paraventricular nucleus (PVN). This disrupts the balance of corticosteroid receptors (GR/MR) and subsequently reduces the sympathetic outflow in the PVN. Vascular endothelial cells rapidly react to inhibition of sympathetic tone by provoking endothelial apoptosis in adult male mice treated with methylprednisolone (MPS) daily for 3 days, and we find substantially reduced H-type vessels in the femoral heads of MPS-treated ONFH mice. Importantly, treatment with a GR inhibitor (RU486) in the PVN promotes the activation of MR and rebalances the ratio of GR and MR, thus effectively boosting sympathetic outflow, as shown by an increase in tyrosine hydroxylase expression in both the PVN and the sympathetic postganglionic neurons and an increase in norepinephrine levels in both the serum and bone marrow of the femoral head of MPS-treated mice. Rebalancing the corticosteroid receptors mitigates GC-induced endothelial impairment and ONFH and promotes angiogenesis coupled with osteogenesis in the femoral head, while these effects are abolished by chemical sympathectomy with 6-OHDA or adrenergic receptor-β2 (Adrb2) knockout. Furthermore, activating Adrb2 signaling in vivo is sufficient to rescue the GC-induced ONFH phenotype. Mechanistically, norepinephrine increases the expression of the key glycolytic gene 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) via Adrb2-cyclic AMP response element-binding protein (CREB) signaling. Endothelial-specific overexpression of PFKFB3 attenuates endothelial impairment and prevents severe osteonecrosis in MPS-treated Adrb2 knockout mice. Thus, GC inhibits sympathetic tone via the hypothalamic descending pathway, which, in turn, acts as a mediator of GC-induced ONFH.

Packaged release and targeted delivery of cytokines by migrasomes in circulation

In dynamic systems like the circulatory system, establishing localized cytokine gradients is challenging. Upon lipopolysaccharide (LPS) stimulation, we observed that monocytes release numerous migrasomes enriched with inflammatory cytokines, such as TNF-α and IL-6. These cytokines are transported into migrasomes via secretory carriers, leading to their immediate exocytosis or eventual release from detached migrasomes. We successfully isolated TNF-α and IL-6-enriched, monocyte-derived migrasomes from the blood of LPS-treated mice. Total secretion analysis revealed a substantial amount of TNF-α and IL-6 released in a migrasome-packaged form. Thus, detached, monocyte-derived migrasomes represent a type of extracellular vesicle highly enriched with cytokines. Physiologically, these cytokine-laden migrasomes rapidly accumulate at local sites of inflammation, effectively creating a concentrated source of cytokines. Our research uncovers novel mechanisms for cytokine release and delivery, providing new insights into immune response modulation.

Phosphorylation of endothelial histone H3.3 serine 31 by PKN1 links flow-induced signaling to proatherogenic gene expression

Atherosclerotic lesions develop preferentially in arterial regions exposed to disturbed blood flow, where endothelial cells acquire an inflammatory phenotype. How disturbed flow induces endothelial cell inflammation is incompletely understood. Here we show that histone H3.3 phosphorylation at serine 31 (H3.3S31) regulates disturbed-flow-induced endothelial inflammation by allowing rapid induction of FOS and FOSB, required for inflammatory gene expression. We identified protein kinase N1 (PKN1) as the kinase responsible for disturbed-flow-induced H3.3S31 phosphorylation. Disturbed flow activates PKN1 in an integrin α5β1-dependent manner and induces its translocation into the nucleus, and PKN1 is also involved in the phosphorylation of the AP-1 transcription factor JUN. Mice with endothelium-specific PKN1 loss or endothelial expression of S31 phosphorylation-deficient H.3.3 mutants show reduced endothelial inflammation and disturbed-flow-induced vascular remodeling in vitro and in vivo. Together, we identified a pathway whereby disturbed flow through PKN1-mediated histone phosphorylation and FOS/FOSB induction promotes inflammatory gene expression and vascular inflammation.

Responses

Your email address will not be published. Required fields are marked *