Related Articles

Dimensionality-enhanced mid-infrared light vortex detection based on multilayer graphene

Recent conceptual demonstrations of direct photocurrent readout of light vortices have enabled the development of light orbital angular momentum-sensitive focal plane arrays and on-chip integration of orbital angular momentum detection. However, known orbital angular momentum-sensitive materials are limited to two topological Weyl Semimetals belonging to the C2v point group, namely, WTe2 and TaIrTe4. Both are fragile under ambient conditions and challenging for large-scale epitaxial growth. In this work, we demonstrate that multilayer graphene, which is complementary metal–oxide–semiconductor compatible and epitaxially growable at the wafer scale, is applicable for orbital angular momentum detection in the mid-infrared region. Using a multilayer graphene photodetector with a designed U-shaped electrode geometry, we demonstrate that the topological charge of orbital angular momentum can be detected directly through the orbital photogalvanic effect and that the orbital angular momentum recognition capability of multilayer graphene is an order of magnitude greater than that of TaIrTe4. We found that the detection capability of multilayer graphene is enabled by the enhanced orbital photogalvanic effect response due to the reduced dimensionality and scattering rate. Our work opens a new technical route to improve orbital angular momentum recognition capability and is immediately applicable for large-scale integration of ambient stable, mid-infrared direct orbital angular momentum photodetection devices.

Design and predict tetragonal van der Waals layered quantum materials of MPd5I2 (M=Ga, In and 3d transition metals)

Quantum materials with stacked van der Waals (vdW) layers hosting non-trivial band structure topology and magnetism have shown many interesting properties. Using high throughput density functional theory calculations, we design and predict tetragonal vdW-layered quantum materials in the MPd5I2 structure (M=Ga, In and 3d transition metals). We show that besides the known AlPd5I2, the -MPd5– structural motif of three-atomic-layer slabs separated by two I layers can accommodate a variety of metal atoms giving arise to topologically non-trivial features and highly tunable magnetic properties in both bulk and single layer 2D structures. Among them, TiPd5I2 and InPd5I2 host a pair of Dirac points and likely an additional strong topological insulator state for the band manifolds just above and below the top valence band, respectively, with their single layers hosting or near quantum spin Hall states. CrPd5I2 is a ferromagnet with a large out-of-plane magneto-anisotropy energy, desirable for rare-earth-free permanent magnets.

Electric-field manipulation of magnetization in an insulating dilute ferromagnet through piezoelectromagnetic coupling

The electric field control of magnetization is of significant interest in materials science due to potential applications in many devices such as sensors, actuators, and magnetic memories. Here, we report magnetization changes generated by an electric field in ferromagnetic Ga1−xMnxN grown by molecular beam epitaxy. Two classes of phenomena have been revealed. First, over a wide range of magnetic fields, the magnetoelectric signal is odd in the electric field and reversible. Employing a macroscopic spin model and atomistic Landau-Lifshitz-Gilbert theory with Langevin dynamics, we demonstrate that the magnetoelectric response results from the inverse piezoelectric effect that changes the trigonal single-ion magnetocrystalline anisotropy. Second, in the metastable regime of ferromagnetic hystereses, the magnetoelectric effect becomes non-linear and irreversible in response to a time-dependent electric field, which can reorient the magnetization direction. Interestingly, our observations are similar to those reported for another dilute ferromagnetic semiconductor Crx(Bi1−ySby)1−xTe3, in which magnetization was monitored as a function of the gate electric field. Those results constitute experimental support for theories describing the effects of time-dependent perturbation upon glasses far from thermal equilibrium in terms of an enhanced effective temperature.

Coulomb interactions and migrating Dirac cones imaged by local quantum oscillations in twisted graphene

Flat-band moiré graphene systems are a quintessential platform for investigating correlated phases of matter. Various interaction-driven ground states have been proposed, but despite extensive experimental effort, there has been little direct evidence that distinguishes between various phases, in particular near the charge neutrality point. Here we probe the fine details of the density of states and the effects of Coulomb interactions in alternating-twist trilayer graphene by imaging the local thermodynamic quantum oscillations with a nanoscale scanning superconducting quantum interference device. We find that the charging self-energy due to occupied electronic states is most important in explaining the high-carrier-density physics. At half-filling of the conduction flat band, we observe ferromagnetic-driven symmetry breaking, suggesting that it is the most robust mechanism in the hierarchy of phase transitions. Near charge neutrality, where exchange energy dominates over charging self-energy, we find a nematic semimetal ground state, which is theoretically favoured over gapped states in the presence of heterostrain. In this semimetallic phase, the flat-band Dirac cones migrate towards the mini-Brillouin zone centre, spontaneously breaking the threefold rotational symmetry. Our low-field local quantum oscillation technique can be used to explore the ground states of many strongly interacting van der Waals systems.

Unconventional bulk-Fermi-arc links paired third-order exceptional points splitting from a defective triple point

Exceptional degeneracies, unique to open systems, are important in non-Hermitian topology. While bulk-Fermi-arcs connecting second-order exceptional points (EP2s) have been observed, the existence of bulk-Fermi-arcs linking higher-order exceptional points remains unexplored. Here, we introduce an unconventional bulk-Fermi-arc in systems with parity-time and pseudo-Hermitian symmetries, which links paired third-order exceptional points (EP3s), where three eigenvalues share identical real parts but distinct imaginary parts. We realize these systems using topological circuits and experimentally demonstrate this unconventional bulk-Fermi-arc. A winding number defined from resultant vector shows that the bulk-Fermi-arc is stabilized by the exchange of Riemannian sheets. Furthermore, analysis via eigenframe deformation and rotation reveals that the EP3 pair is topologically nontrivial and equivalent to a single defective triple point. The EP3s can split from the triple point by varying system parameters, with this splitting protected by topological equivalence. This finding offers insights into non-Hermitian topology with potential applications in wave engineering.

Responses

Your email address will not be published. Required fields are marked *