Related Articles
Gravitational stability of iron-rich peridotite melt at Mars’ core-mantle boundary
Possible existence of dense iron-rich silicate melt layer above Mars’ core is important in understanding the nature and evolution of Mars. However, gravitational stability of iron-rich silicate melt in the Mars’ interior has not been well constrained, due to experimental difficulties in measuring density of iron-rich peridotitic melt. Here we report density measurements of iron-rich peridotitic melts up to 2465 K by using electrostatic levitation furnace at the International Space Station. Our experimentally obtained densities of iron-rich peridotitic melts are markedly higher than those calculated by first principles simulation, and are distinct from those estimated by extrapolating a density model for SiO2-rich basaltic melts. Our determined density model suggests that peridotitic melt with the Fe/(Mg+Fe) ratio more than 0.4-0.5 has higher density than that at the base of the Mars’ mantle, which indicates gravitational stability of the iron-rich peridotitic melt at the core-mantle boundary in Mars.
Revealing the mechanism of cold metal transfer
Cold metal transfer (CMT) is a pioneering feeding system widely used in wire-arc additive manufacturing (WAAM) and welding. However, process optimisation remains challenging. Although CMT has been extensively applied in various industrial sectors, its underlying mechanism is poorly understood because of the complex physics of the interactions between the wire and molten material and the wire’s highly dynamic motion. To elucidate the complexity and features of CMT, we explore the dynamic behaviour and anatomy of molten materials during wire motions (withdrawal and dipping cycles) using high-speed photography at a timescale of microseconds. We reveal a crucial driving force in the melt pool and the frequent ejection of streams or particles during CMT. This study contributes to WAAM and welding by presenting the influential features of ultra-high-dynamics CMT and facilitating the progression of process optimisation.
Perspective of soil carbon sequestration in Chilean volcanic soils
We analysed a large dataset consisting of 457 soil profiles of Andisols and Ultisols of volcanic origin compared to 60 non-volcanic soils. We hypothesised that soil pH has a greater impact on the development of Al-organomineral complexes in volcanic soils compared to non-volcanic soils, in the latter, the silt and clay fractions play a crucial role. Soil pH >4.5 strongly influenced the formation of Al-organomineral complexes in volcanic soils, while an increase in allophane content led to a decrease in SOC. Ultisols with more crystalline clays, such as halloysite and disordered kaolinite, the pH had a weaker impact and there was no effect on non-volcanic soils. Instead, a positive correlation (R2 = 0.63, p < 0.01) was found between silt and clay and SOC in non-volcanic soils, supporting our second hypothesis. Soil pH played a significant role in the interplay between Al-organomineral complexes and allophane formation, while crystalline mineralogy has a direct effect on SOC levels in non-volcanic soils.
Optimum corrosion performance using microstructure design and additive manufacturing process control
Compatibility of traditional metallic alloys, particularly 316 L stainless steel, with additive manufacturing (AM) processes, is essential for industrial applications. This involves manipulating process parameters to design microstructures at various length scales, achieving desired properties for high-performance components. In this study, a hierarchical design approach was used for LPBF 316 L parts, achieving cell sizes of 400 to 900 nm confined within grains of 40 to 60 μm. Findings showed that varying scan strategies with constant energy input produced high-density components, with the smallest grain and cell size achieved in the continuous scan strategy. In addition, equations were developed to connect energy density with grain size for LPBF-316L, highlighting optimal scanning strategies. Furthermore, the correlation between microstructural features and corrosion behavior, focusing on electrochemical properties, was explored by adjusting key LPBF process parameters. The results suggested a Hall-Petch relationship between grain size and corrosion rate, indicating that smaller grains and cells reduce corrosion rates by affecting electrochemical behavior.
Escalation of caldera unrest indicated by increasing emission of isotopically light sulfur
Calderas are depressions formed by some of the largest volcanic eruptions. Their long-lived inter-eruptive periods are occasionally interrupted by phases of unrest, in which escalating seismicity, ground deformation and gas emissions raise concerns of potential volcano reawakening. However, interpretation of such physico-chemical signals is complicated by few examples of monitored unrest that culminated into eruption and by our fragmentary understanding of the drivers and timescales of caldera reactivation. Here we show that multi-decadal gas observations at the restless Campi Flegrei caldera in Italy record an unprecedented increase in isotopically light sulfur release from fumaroles since 2018. We then use hydrothermal gas equilibria and numerical simulations of magmatic degassing to propose that such a change in sulfur emissions results from decompression-driven degassing of mafic magma at ≥6 km depth, along with some extent of sulfur remobilization from hydrothermal minerals. Examination of a global dataset indicates that, despite the diversity in eruptive behaviour and tectonic setting, increasing sulfur output may be a common process during unrest escalation at calderas generally. Hence, our observations and models of sulfur behaviour may inform interpretations of unrest and hazard assessment at reawakening calderas and hydrothermal active volcanoes worldwide.
Responses