Related Articles
Urine electrooxidation for energy–saving hydrogen generation
Urea electrooxidation offers a cost-effective alternative to water oxidation for energy-saving hydrogen production. However, its practical application is limited by expensive urea reactants and sluggish reaction kinetics. Here, we present an efficient urine electrolysis system for hydrogen production, using cost-free urine as feedstock. Our system leverages a discovered Cl-mediated urea oxidation mechanism on Pt catalysts, where adsorbed Cl directly couple with urea to form N-chlorourea intermediates, which are then converted into N2 via intermolecular N–N coupling. This rapid mediated-oxidation process notably improves the activity and stability of urine electrolysis while avoiding Cl-induced corrosion, enabling over 200 hours of operation at reduced voltages. Accordingly, a notable reduction in the electricity consumption is achieved during urine electrolysis (4.05 kWh Nm−3) at 300 mA cm−2 in practical electrolyser for hydrogen production, outperforming the traditional urea (5.62 kWh Nm−3) and water (4.70–5.00 kWh Nm−3) electrolysis.
Tailoring the grain boundary structure and chemistry of the dendrite-free garnet solid electrolyte Li6.1Ga0.3La3Zr2O12
Garnet-type Li6.1Ga0.3La3Zr2O12 (LGLZO) exhibits high ionic conductivity and extremely low electronic conductivity. The electrochemical properties strongly depend on the characteristics of the grain boundaries and pores in the oxide–ceramic electrolyte. Currently, the main issue of LGLZO is its large grain boundary resistance due to high-temperature sintering. Herein, we propose an effective method for reinforcing the chemical and structural characteristics of the grain boundaries using a Li2O-B2O3-Al2O3 (LBA) sintering aid. In this study, the LBA sintering aid is critical because it fills grain boundaries and void spaces. As a result, LGLZO solid-state electrolytes with sintering aids significantly enhance the ionic conductivity and reduce the activation energy, especially in the grain boundary region. Another crucial issue is the formation of Li dendrites in LGLZO. Since dendritic Li propagates along the grain boundaries, the optimized LGLZO solid-state electrolyte demonstrates excellent stability against Li metals. Overall, the LGLZO electrolyte with the LBA sintering aid exhibits stable long-term cycling performance due to the well-designed grain boundaries.
Effect of hydrogen leakage on the life cycle climate impacts of hydrogen supply chains
Hydrogen is of interest for decarbonizing hard-to-abate sectors because it does not produce carbon dioxide when combusted. However, hydrogen has indirect warming effects. Here we conducted a life cycle assessment of electrolysis and steam methane reforming to assess their emissions while considering hydrogen’s indirect warming effects. We find that the primary factors influencing life cycle climate impacts are the production method and related feedstock emissions rather than the hydrogen leakage and indirect warming potential. A comparison between fossil fuel-based and hydrogen-based steel production and heavy-duty transportation showed a reduction in emissions of 800 to more than 1400 kg carbon dioxide equivalent per tonne of steel and 0.1 to 0.17 kg carbon dioxide equivalent per tonne-km of cargo. While any hydrogen production pathway reduces greenhouse gas emissions for steel, this is not the case for heavy-duty transportation. Therefore, we recommend a sector-specific approach in prioritizing application areas for hydrogen.
Terminal differentiation and persistence of effector regulatory T cells essential for preventing intestinal inflammation
Regulatory T (Treg) cells are a specialized CD4+ T cell lineage with essential anti-inflammatory functions. Analysis of Treg cell adaptations to non-lymphoid tissues that enable their specialized immunosuppressive and tissue-supportive functions raises questions about the underlying mechanisms of these adaptations and whether they represent stable differentiation or reversible activation states. Here, we characterize distinct colonic effector Treg cell transcriptional programs. Attenuated T cell receptor (TCR) signaling and acquisition of substantial TCR-independent functionality seems to facilitate the terminal differentiation of a population of colonic effector Treg cells that are distinguished by stable expression of the immunomodulatory cytokine IL-10. Functional studies show that this subset of effector Treg cells, but not their expression of IL-10, is indispensable for colonic health. These findings identify core features of the terminal differentiation of effector Treg cells in non-lymphoid tissues and their function.
High-throughput synthesis of high-entropy alloys via parallelized electric field assisted sintering
Materials discovery and design is an expensive and time-consuming process, though necessary to advance many engineering fields. In this work, a novel tooling design is utilized in conjunction with electric field assisted sintering (EFAS) to effectively create a new high-throughput synthesis technique: parallelized EFAS. Through this technique, a wide range of material compositions and geometries can be synthesized in parallel as isolated samples or as part of contiguous arrays. Multiple tooling designs are explored to examine both the flexibility and limitations of the technique. A series of increasing complex alloys is produced simultaneously using in situ alloying, beginning with pure Ni and adding equimolar constituents up to the septenary high-entropy alloy AlCoCrCuFeMnNi. Microstructural characterization reveals each sample is effectively fully dense and chemically homogenous while exhibiting phases in agreement with CALPHAD predictions. Scalability of parallelized EFAS is then experimentally demonstrated and the implications for materials discovery and automation are discussed.
Responses