Related Articles
Enhanced energy storage in relaxor (1-x)Bi0.5Na0.5TiO3-xBaZryTi1-yO3 thin films by morphotropic phase boundary engineering
Perovskites at the crossover between ferroelectric and relaxor are often used to realize dielectric capacitors with high energy and power density and simultaneously good efficiency. Lead-free Bi0.5Na0.5TiO3 is gaining importance in showing an alternative to lead-based devices. Here we show that (1-x)Bi0.5Na0.5TiO3 – xBaZryTi1-yO3 (best: 0.94Bi0.5Na0.5TiO3 -0.06BaZr0.4Ti0.6O3) shows an increase of recoverable energy density and electric breakdown upon chemical substitution. In thin films derived from Chemical Solution Deposition, we observed that polarization peaks at the morphotropic phase boundary at x = 0.06. While Zr substitution results in reduced polarization, it enhances both efficiency and electric breakdown strength, ultimately doubling the recoverable energy density and the metallization interface by lowering surface roughness. Our dielectric capacitor shows <3% deviation of energy properties over 106 cycles. A virtual device model of a multilayer thin film capacitor (7.25 mJ recoverable energy) was used to compare its performance to already in use multilayer ceramic capacitors.
Improving the thermoelectric performance of scandium nitride thin films by implanting helium ions
Ion implantation is a widely used technique to introduce defects in low-dimensional materials and tune their properties. Here, we investigate the thermoelectric properties of scandium nitride thin films implanted with helium ions, revealing a positive impact of defect engineering on thermoelectric performance. Transport properties modeling and electron microscopy provide insights on the defect distribution in the films. The electrical resistivity and Seebeck coefficient increase significantly in absolute values after implantation and partially recover upon annealing as some of the implantation-induced defects heal. The thermal conductivity decreases by 46 % post- implantation due to the formation of extended defects and nanocavities. Consequently, the thermoelectric figure of merit zT doubles for the sample annealed at 673 K. These findings highlight the potential of controlled ion implantation to enhance thermoelectric properties in thin films, paving the way for further optimization through defect engineering.
Fluorine-modified passivator for efficient vacuum-deposited pure-red perovskite light-emitting diodes
Vacuum-deposited perovskite light-emitting diodes (PeLEDs) have demonstrated significant potential for high-color-gamut active-matrix displays. Despite the rapid advance of green PeLEDs, red ones remain a considerable challenge because of the inferior photophysical properties of vacuum-deposited red-light-emitting materials. Here, a rationally designed fluorine-modified phosphine oxide additive was introduced to in-situ passivate vacuum-deposited perovskites. The highly polar 2-F-TPPO incorporated perovskite films demonstrated enhanced photoluminescence quantum yield (PLQY), suppressed defects, and improved crystallinity. When implemented as active layers in PeLEDs, an external quantum efficiency (EQE) of 12.6% with an emission wavelength of 640 nm is achieved, which was 6 times higher compared to the previously reported most efficient vacuum-deposited red PeLEDs (EQE below 2%). Our findings lay the foundations for the further exploration of high-performance vacuum-deposited PeLEDs toward full-color perovskite displays.
Ultrafast exciton-phonon coupling and energy transfer dynamics in quasi-2D layered Ruddlesden-Popper perovskites
Understanding the performance of perovskite solar cells is critical for advancing sustainable energy solutions. Hot-drop casted quasi-2D Ruddlesden-Popper perovskites (RPPs) exhibit remarkable efficiency and stability, making them promising for commercial applications. However, the ultrafast energy transfer and exciton-phonon interactions in these materials remain unclear. Here, we show that using advanced techniques like two-dimensional electronic spectroscopy (2DES) and transient grating (TG), we can unravel energy dynamics in hot-drop casted RPP films. Our study reveals rapid energy transfer between perovskite layers occurring within 100–220 femtoseconds and highlights how exciton-phonon coupling drives structural changes in the material. Coherent vibrational signals identify key lattice and organic cation modes, providing insights into their role in energy dissipation. These findings deepen our understanding of how 2D perovskites work and pave the way for improving the efficiency and stability of next-generation optoelectronic devices.
Scanning vortex microscopy reveals thickness-dependent pinning nano-network in superconducting niobium films
The presence of quantum vortices determines the electromagnetic response of superconducting materials and devices. Controlling the motion of vortices and their pinning on intrinsic and artificial defects is therefore essential for further development of superconducting electronics. Here we take advantage of the attractive force between a magnetic tip of the Magnetic Force Microscope and a single quantum vortex to spatially map the pinning force inside 50–240 nm thick magnetron-sputtered niobium films, widely used in various applications. The revealed pinning nanonetwork is related to the thickness-dependent granular structure of the films as well as to the characteristic microscopic scales of superconductivity. Our approach is general and can be directly applied to other type-II granular superconducting materials and nanodevices.
Responses