Sociodemographic and clinical factors associated with low muscle mass and composition in people treated with (chemo)radiotherapy for lung cancer

Related Articles

Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects

The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.

Bifidobacterium animalis subsp. lactis A6 ameliorates bone and muscle loss via modulating gut microbiota composition and enhancing butyrate production

Systematic bone and muscle loss is a complex metabolic disease, which is frequently linked to gut dysfunction, yet its etiology and treatment remain elusive. While probiotics show promise in managing diseases through microbiome modulation, their therapeutic impact on gut dysfunction-induced bone and muscle loss remains to be elucidated. Employing dextran sulfate sodium (DSS)-induced gut dysfunction model and wide-spectrum antibiotics (ABX)-treated mice model, our study revealed that gut dysfunction instigates muscle and bone loss, accompanied by microbial imbalances. Importantly, Bifidobacterium animalis subsp. lactis A6 (B. lactis A6) administration significantly ameliorated muscle and bone loss by modulating gut microbiota composition and enhancing butyrate-producing bacteria. This intervention effectively restored depleted butyrate levels in serum, muscle, and bone tissues caused by gut dysfunction. Furthermore, butyrate supplementation mitigated musculoskeletal loss by repairing the damaged intestinal barrier and enriching beneficial butyrate-producing bacteria. Importantly, butyrate inhibited the NF-κB pathway activation, and reduced the secretion of corresponding inflammatory factors in T cells. Our study highlights the critical role of dysbiosis in gut dysfunction-induced musculoskeletal loss and underscores the therapeutic potential of B. lactis A6. These discoveries offer new microbiome directions for translational and clinical research, providing promising strategies for preventing and managing musculoskeletal diseases.

Targeting of TAMs: can we be more clever than cancer cells?

With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.

SMARCB1-driven EGFR-GLI1 epigenetic alterations in lung cancer progression and therapy are differentially modulated by MEOX2 and GLI-1

Lung cancer remains the leading cause of cancer-related mortality globally, with genes such as SMARCB1, MEOX2, and GLI-1 playing significant roles in its malignancy. Despite their known involvement, the specific molecular contributions of these genes to lung cancer progression, particularly their effects on epigenetic modifications on oncogenes sequences as EGFR and GLI-1, and their influence in the response to EGFR-TKI-based therapies, have not been fully explored. Our study reveals how MEOX2 and GLI-1 are key molecular modulators of the GLI-1 and EGFR-epigenetic patterns, which in turn transcriptionally and epigenetically affect EGFR gene expression in lung cancer. Additionally, MEOX2 was found to significantly promote in vivo lung tumor progression and diminish the effectiveness of EGFR-TKI therapies. Conversely, mSWI/SNF derived subunit SMARCB1 was detected to suppress tumor growth and enhance the oncological therapeutic response in in vivo studies by inducing epigenetic modifications in the GLI-1 and EGFR genetic sequences. Furthermore, our results suggest that BRD9 may contribute to the activation of both lung cancer oncogenes GLI-1 and EGFR. Such findings suggest that SMARCB1 and MEOX2 could serve as important prognosis biomarkers and target genes in human lung cancer therapy, offering new opportunities for the development of more effective and selective treatment strategies in the field of lung malignant diseases.

Inhibition of GSK3β is synthetic lethal with FHIT loss in lung cancer by blocking homologous recombination repair

FHIT is a fragile site tumor suppressor that is primarily inactivated upon tobacco smoking. FHIT loss is frequently observed in lung cancer, making it an important biomarker for the development of targeted therapy for lung cancer. Here, we report that inhibitors of glycogen synthase kinase 3 beta (GSK3β) and the homologous recombination DNA repair (HRR) pathway are synthetic lethal with FHIT loss in lung cancer. Pharmacological inhibition or siRNA depletion of GSK3β selectively suppressed the growth of FHIT-deficient lung cancer tumors in vitro and in animal models. We further showed that FHIT inactivation leads to the activation of DNA damage repair pathways, including the HRR and NHEJ pathways, in lung cancer cells. Conversely, FHIT-deficient cells are highly dependent on HRR for survival under DNA damage stress. The inhibition of GSK3β in FHIT-deficient cells suppressed the ATR/BRCA1/RAD51 axis in HRR signaling via two distinct pathways and suppressed DNA double-strand break repair, leading to the accumulation of DNA damage and apoptosis. Small molecule inhibitors of HRR, but not NHEJ or PARP, induced synthetic lethality in FHIT-deficient lung cancer cells. The findings of this study suggest that the GSK3β and HRR pathways are potential drug targets in lung cancer patients with FHIT loss.

Responses

Your email address will not be published. Required fields are marked *