Related Articles

mtSTAT3 suppresses rheumatoid arthritis by regulating Th17 and synovial fibroblast inflammatory cell death with IL-17-mediated autophagy dysfunction

Th17 cells are activated by STAT3 factors in the nucleus, and these factors are correlated with the pathologic progression of rheumatoid arthritis (RA). Recent studies have demonstrated the presence of STAT3 in mitochondria, but its function is unclear. We investigated the novel role of mitochondrial STAT3 (mitoSTAT3) in Th17 cells and fibroblast-like synoviocytes (FLSs) and analyzed the correlation of mitoSTAT3 with RA. We used a collagen-induced arthritis (CIA) mouse model to determine the effect of mitochondrial STAT3. We observed changes in the RA mouse model via the use of a mitochondrial STAT3-inducing vector and inhibitor. We observed the accumulation of abnormal autophagosomes, increased inflammatory cell death signaling, and decreased mitoSTAT3 activity in FLSs from both patients with RA and patients with IL-17-treated FLSs. We first discovered that IL-17 increased the accumulation of abnormal autophagosomes and the expression of inflammatory cell death factors in synovial fibroblasts and decreased mitoSTAT3 activation. In a mouse model of CIA, arthritis and joint inflammation were decreased by injection vectors that induced mitoSTAT3 overexpression. The abnormal accumulation of autophagosomes and the expression of inflammatory cell death factors were also decreased in these mice. In mouse and human immune cells, ZnSO4, an inducer of mitochondrial STAT3, decreases the production of reactive oxygen species, the IL-17 concentration, and differentiation into Th17 cells. However, mitoSTAT3 blockade accelerated the development of arthritis, inflammatory cell death, and abnormal autophagosome/autophagolysosome formation. Therefore, this study suggests a novel inhibitory mechanism of RA using mitoSTAT3 via the regulation of autophagy, Th17 differentiation, and inflammatory cell death.

CDK8/19 inhibition attenuates G1 arrest induced by BCR-ABL antagonists and accelerates death of chronic myelogenous leukemia cells

Imatinib mesylate (IM) and other BCR-ABL tyrosine kinase inhibitors (BCR-ABLi) are the mainstay of chronic myelogenous leukemia (CML) treatment. However, activation of circumventing signaling pathways and quiescence may limit BCR-ABLi efficacy. CDK8/19 Mediator kinases have been implicated in the emergence of non-genetic drug resistance. Dissecting the effects of pharmacological CDK8/19 inhibition on CML survival in response to BCR-ABLi, we found that a selective, non-toxic CDK8/19 inhibitor (CDK8/19i) Senexin B (SenB) and other CDK8/19i sensitized K562 cells to different BCR-ABLi via attenuation of cell cycle arrest. In particular, SenB prevented IM-induced upregulation of genes that negatively regulate cell cycle progression. SenB also antagonized IM-activated p27Kip1 elevation thereby diminishing the population of G1-arrested cells. After transient G1 arrest, cells treated with IM + SenB re-entered the S phase, where they were halted and underwent replicative stress. Consequently, the combination of IM and SenB intensified apoptotic cell death, measured by activation of caspase 9 and 3, subsequent cleavage of poly(ADPriboso)polymerase 1, positive Annexin V staining and increase of subG1 fraction. In contrast, IM-treated BCR-ABL-positive KU812 CML cells, which did not induce p27Kip1, readily died regardless of SenB treatment. Thus, CDK8/19i prevent the quiescence-mediated escape from BCR-ABLi-induced apoptosis, suggesting a strategy for avoiding the CML relapse.

B-cell receptor physical properties affect relative IgG1 and IgE responses in mouse egg allergy

Mutated and unmutated IgE and IgG play different and partly opposing roles in allergy development, but the mechanisms controlling their relative production are incompletely understood. Here, we analyzed the IgE-response in murine food allergy. Deep sequencing of the complementary-determining region (CDR) repertoires indicated that an ongoing unmutated extrafollicular IgE response coexists with a germinal center response, even after long-lasting allergen challenges. Despite overall IgG1-dominance, a significant proportion of clonotypes contained several-fold more IgE than IgG1. Clonotypes with differential bias to either IgE or IgG1 showed distinct hypermutation and clonal expansion. Hypermutation rates were associated with different physiochemical binding properties of individual B-cell receptors (BCR). Increasing BCR signaling strength inhibited class switching from IgG1 to IgE in vitro, preferentially constraining IgE formation. These data indicate that antigen-binding properties of individual BCRs determine differential IgE hypermutation and IgE versus IgG1 production on the level of single B-cell clones.

Responses

Your email address will not be published. Required fields are marked *