Related Articles

A computational spectrometer for the visible, near, and mid-infrared enabled by a single-spinning film encoder

Computational spectrometers enable low-cost, in-situ, and rapid spectral analysis, with applications in chemistry, biology, and environmental science. Traditional filter-based spectral encoding approaches typically use filter arrays, complicating the manufacturing process and hindering device consistency. Here we propose a computational spectrometer spanning visible to mid-infrared by combining the Single-Spinning Film Encoder (SSFE) with a deep learning-based reconstruction algorithm. Optimization through particle swarm optimization (PSO) allows for low-correlation and high-complexity spectral responses under different polarizations and spinning angles. The spectrometer demonstrates single-peak resolutions of 0.5 nm, 2 nm, 10 nm, and dual-peak resolutions of 3 nm, 6 nm, 20 nm for the visible, near, and mid-infrared wavelength ranges. Experimentally, it shows an average MSE of 1.05 × 10⁻³ for narrowband spectral reconstruction in the visible wavelength range, with average center-wavelength and linewidth errors of 0.61 nm and 0.56 nm. Additionally, it achieves an overall 81.38% precision for the classification of 220 chemical compounds, showcasing its potential for compact, cost-effective spectroscopic solutions.

Modulating neuroplasticity for chronic pain relief: noninvasive neuromodulation as a promising approach

Chronic neuropathic pain is a debilitating neuroplastic disorder that notably impacts the quality of life of millions of people worldwide. This complex condition, encompassing various manifestations, such as sciatica, diabetic neuropathy and postherpetic neuralgia, arises from nerve damage or malfunctions in pain processing pathways and involves various biological, physiological and psychological processes. Maladaptive neuroplasticity, known as central sensitization, plays a critical role in the persistence of chronic neuropathic pain. Current treatments for neuropathic pain include pharmacological interventions (for example, antidepressants and anticonvulsants), invasive procedures (for example, deep brain stimulation) and physical therapies. However, these approaches often have limitations and potential side effects. In light of these challenges, interest in noninvasive neuromodulation techniques as alternatives or complementary treatments for neuropathic pain is increasing. These methods aim to induce analgesia while reversing maladaptive plastic changes, offering potential advantages over conventional pharmacological practices and invasive methods. Recent technological advancements have spurred the exploration of noninvasive neuromodulation therapies, such as repetitive transcranial magnetic stimulation, transcranial direct current stimulation and transcranial ultrasound stimulation, as well as innovative transformations of invasive techniques into noninvasive methods at both the preclinical and clinical levels. Here this review aims to critically examine the mechanisms of maladaptive neuroplasticity in chronic neuropathic pain and evaluate the efficacy of noninvasive neuromodulation techniques in pain relief. By focusing on optimizing these techniques, we can better assess their short-term and long-term effects, refine treatment variables and ultimately improve the quality of neuropathic pain management.

In vivo surface-enhanced Raman scattering techniques: nanoprobes, instrumentation, and applications

Surface-enhanced Raman scattering (SERS) has emerged as a powerful tool in various biomedical applications, including in vivo imaging, diagnostics, and therapy, largely due to the development of near-infrared (NIR) active SERS substrates. This review provides a comprehensive overview of SERS-based applications in vivo, focusing on key aspects such as the design considerations for SERS nanoprobes and advancements in instrumentation. Topics covered include the development of NIR SERS substrates, Raman label compounds (RLCs), protective coatings, and the conjugation of bioligands for targeted imaging and therapy. The review also discusses microscope-based configurations such as scanning, widefield imaging, and fiber-optic setups. Recent advances in using SERS nanoprobes for in vivo sensing, diagnostics, biomolecule screening, multiplex imaging, intraoperative guidance, and multifunctional cancer therapy are highlighted. The review concludes by addressing challenges in the clinical translation of SERS nanoprobes and outlines future directions, emphasizing opportunities for advancing biomedical research and clinical applications.

Machine learning empowered coherent Raman imaging and analysis for biomedical applications

In situ and in vivo visualization and analysis of functional, endogenous biomolecules in living systems have generated a pivotal impact in our comprehension of biology and medicine. An increasingly adopted approach involves the utilization of molecular vibrational spectroscopy, which delivers notable advantages such as label-free imaging, high spectral density, high sensitivity, and molecule specificity. Nonetheless, analyzing and processing the intricate, multi-dimensional imaging data to extract interpretable and actionable information poses a fundamental obstacle. In contrast to conventional multivariate methods, machine learning has recently gained considerable attention for its capability of discerning essential features from massive datasets. Here, we present a comprehensive review of the latest advancements in the application of machine learning in the molecular spectroscopic imaging fields. We also discuss notable attributes of spectroscopic imaging modalities and explore their broader impact on other imaging techniques.

A blood glucose fluctuation-responsive delivery system promotes bone regeneration and the repair function of Smpd3-reprogrammed BMSC-derived exosomes

Blood glucose fluctuation leads to poor bone defect repair in patients with type 2 diabetes (T2DM). Strategies to safely and efficiently improve the bone regeneration disorder caused by blood glucose fluctuation are still a challenge. Neutral sphingophospholipase 2 (Smpd3) is downregulated in jawbone-derived bone marrow mesenchymal stem cells (BMSCs) from T2DM patients. Here, we investigated the effect of Smpd3 on the osteogenic differentiation of BMSCs and utilized exosomes from stem cells overexpressing Smpd3 as the main treatment based on the glucose responsiveness of phenylboronic acid-based polyvinyl alcohol crosslinkers and the protease degradability of gelatin nanoparticles. The combined loading of Smpd3-overexpressing stem cell-derived exosomes (Exos-Smpd3) and nanosilver ions (Ns) to construct a hydrogel delivery system (Exos-Smpd3@Ns) promoted osteogenesis and differentiation of BMSCs in a glucose-fluctuating environment, ectopic osteogenesis of BMSCs in a glucose-fluctuating environment and jawbone regeneration of diabetic dogs in vitro. Mechanistically, Smpd3 promoted the osteogenesis and differentiation of jawbone-derived BMSCs by activating autophagy in the jawbone and inhibiting macrophage polarization and oxidative stress caused by blood glucose fluctuations. These results reveal the role and mechanism of Smpd3 and the Smpd3 overexpression exosome delivery system in promoting BMSC function and bone regeneration under blood glucose fluctuations, providing a theoretical basis and candidate methods for the treatment of bone defects in T2DM patients.

Responses

Your email address will not be published. Required fields are marked *