Related Articles
A latent Axin2+/Scx+ progenitor pool is the central organizer of tendon healing
A tendon’s ordered extracellular matrix (ECM) is essential for transmitting force but is also highly prone to injury. How tendon cells embedded within and surrounding this dense ECM orchestrate healing is not well understood. Here, we identify a specialized quiescent Scx+/Axin2+ population in mouse and human tendons that initiates healing and is a major functional contributor to repair. Axin2+ cells express stem cell markers, expand in vitro, and have multilineage differentiation potential. Following tendon injury, Axin2+-descendants infiltrate the injury site, proliferate, and differentiate into tenocytes. Transplantation assays of Axin2-labeled cells into injured tendons reveal their dual capacity to significantly proliferate and differentiate yet retain their Axin2+ identity. Specific loss of Wnt secretion in Axin2+ or Scx+ cells disrupts their ability to respond to injury, severely compromising healing. Our work highlights an unusual paradigm, wherein specialized Axin2+/Scx+ cells rely on self-regulation to maintain their identity as key organizers of tissue healing.
Polycystin-1 regulates tendon-derived mesenchymal stem cells fate and matrix organization in heterotopic ossification
Mechanical stress modulates bone formation and organization of the extracellular matrix (ECM), the interaction of which affects heterotopic ossification (HO). However, the mechanically sensitive cell populations in HO and the underlying mechanism remain elusive. Here, we show that the mechanical protein Polysyctin-1 (PC1, Pkd1) regulates CTSK lineage tendon-derived mesenchymal stem cell (TDMSC) fate and ECM organization, thus affecting HO progression. First, we revealed that CTSK lineage TDMSCs are the major source of osteoblasts and fibroblasts in HO and are responsive to mechanical cues via single-cell RNA sequencing analysis and experiments with a lineage tracing mouse model. Moreover, we showed that PC1 mediates the mechanosignal transduction of CTSK lineage TDMSCs to regulate osteogenic and fibrogenic differentiation and alters the ECM architecture by facilitating TAZ nuclear translocation. Conditional gene depletion of Pkd1 or Taz in CTSK lineage cells and pharmaceutical intervention in the PC1-TAZ axis disrupt osteogenesis, fibrogenesis and ECM organization, and consequently attenuate HO progression. These findings suggest that mechanically sensitive CTSK-lineage TDMSCs contribute to heterotopic ossification through PC1-TAZ signaling axis mediated cell fate determination and ECM organization.
Trimmed helicoids: an architectured soft structure yielding soft robots with high precision, large workspace, and compliant interactions
The development and use of architectured structures is changing the means by which we design and fabricate soft robots. These materials utilize their topology and geometry to control physical and mechanical structural properties. We propose an architectured structure based on trimmed helicoids that allows for independent regulation of the bending and axial stiffness which facilitates tuneability of the resulting soft robot properties. Leveraging FEA and computational analysis we select a geometry that provides an optimal trade-off between controllability, sensitivity to errors in control, and compliance. By combining these modular trimmed helicoid structures in conjunction with control methods, we demonstrate a meter-scale soft manipulator that shows control precision, large workspace, and compliant interactions with the environment. These properties enable the robot to perform complex tasks that leverage robot-human and robot-environment interactions such as human feeding and collaborative object manipulation.
Combined nerve and tendon transfer strategy for the restoration of grasp in tetraplegia; a case report
By combining nerve and tendon transfer procedures, a more versatile hand function can be expected. Here we report the long-term outcomes of novel, individualized reconstruction strategies using combined nerve and tendon transfer procedures (CNaTT) to restore prehension and grasp in two patients with tetraplegia.
Development of a single port dual arm robotically steerable endoscope for neurosurgical applications
Single-port surgical robots have gained popularity due to less patient trauma and quicker post-surgery recovery. However, due to limited access provided by a single incision, the miniaturization and maneuverability of these robots still needs to be improved. In this paper, we propose the design of a single-port, dual-arm robotically steerable endoscope containing one steerable major cannula and two steerable minor cannulas. By integrating the proposed nine degrees-of-freedom (DoFs) robotically steerable endoscope with an industrial robotic arm and a joystick controller, this robotic system can potentially achieve intuitive, and remote multi-arm manipulation capability. We present the design of the robotically steerable endoscope consisting of tendon-driven joints controlled by a compact actuation system and derive the kinematic and static models. We validate the derived models using different kinematic trajectories with an average RMSE value of 0.98 mm and 0.66 mm for the distal tip position errors of the two steerable minor cannulas.
Responses