Related Articles

The enhanced ferroelectric properties of flexible Hf0.85Ce0.15O2 thin films based on in situ stress regulation

As the core component of ferroelectric memories, HfO2-based ferroelectric thin films play a crucial role in achieving their excellent storage performance. Here, we improved the ferroelectric properties and domain switching properties through in situ stress loading during annealing. The thin films are annealed under different bending states by applying different stress actions, and it is observed that, within a certain range of stress bending, the optimization of the ferroelectric properties of the annealed thin films can reach an extreme value. Specifically, under the influence of a small electric field, the 2Pr values of thin films annealed at +10 and −10 mm increased by 87.1% and 71.1%, respectively, compared with the unbent films. Additionally, these thin films exhibit extremely high domain wall mobility and excellent domain switching capabilities. Once the ferroelectric phase is formed through in situ stress modulation, it remains stable even under multiple service environments.

Combustion-assisted low-temperature ZrO2/SnO2 films for high-performance flexible thin film transistors

We developed high-performance flexible oxide thin-film transistors (TFTs) using SnO2 semiconductor and high-k ZrO2 dielectric, both formed through combustion-assisted sol-gel processes. This method involves the exothermic reaction of fuels and oxidizers to produce high-quality oxide films without extensive external heating. The combustion ZrO2 films were revealed to have an amorphous structure with a higher proportion of oxygen corresponding to the oxide network, which contributes to the low leakage current and frequency-independent dielectric properties. The ZrO2/SnO2 TFTs fabricated on flexible substrates using combustion synthesis exhibited excellent electrical characteristics, including a field-effect mobility of 26.16 cm2/Vs, a subthreshold swing of 0.125 V/dec, and an on/off current ratio of 1.13 × 106 at a low operating voltage of 3 V. Furthermore, we demonstrated flexible ZrO2/SnO2 TFTs with robust mechanical stability, capable of withstanding 5000 cycles of bending tests at a bending radius of 2.5 mm, achieved by scaling down the device dimensions.

Metal organic frameworks for wastewater treatment, renewable energy and circular economy contributions

Metal-Organic Frameworks (MOFs) are versatile materials with tailorable structures, high surface areas, and controlled pore sizes, making them ideal for gas storage, separation, catalysis, and notably wastewater treatment by removing pollutants like antibiotics and heavy metals. Functionalization enhances their applications in energy conversion and environmental remediation. Despite challenges like stability and cost, ongoing innovation in MOFs contributes to the circular economy and aligns with Sustainable Development Goals.

Layer-by-layer assembly yields thin graphene films with near theoretical conductivity

Thin films fabricated from solution-processed graphene nanosheets are of considerable technological interest for a wide variety of applications, such as transparent conductors, supercapacitors, and memristors. However, very thin printed films tend to have low conductivity compared to thicker ones. In this work, we demonstrate a simple layer-by-layer deposition method which yields thin films of highly-aligned, electrochemically-exfoliated graphene which have low roughness and nanometer-scale thickness control. By optimising the deposition parameters, we demonstrate films with high conductivity (1.3 × 105 S/m) at very low thickness (11 nm). Finally, we connect our high conductivities to low inter-nanosheet junction resistances (RJ), which we estimate at RJ ~ 1kΩ.

Solution-processable 2D materials for monolithic 3D memory-sensing-computing platforms: opportunities and challenges

Solution-processable 2D materials (2DMs) are gaining attention for applications in logic, memory, and sensing devices. This review surveys recent advancements in memristors, transistors, and sensors using 2DMs, focusing on their charge transport mechanisms and integration into silicon CMOS platforms. We highlight key challenges posed by the material’s nanosheet morphology and defect dynamics and discuss future potential for monolithic 3D integration with CMOS technology.

Responses

Your email address will not be published. Required fields are marked *