Related Articles
Curiosity shapes spatial exploration and cognitive map formation in humans
Cognitive maps are thought to arise, at least in part, from our intrinsic curiosity to explore unknown places. However, it remains untested how curiosity shapes aspects of spatial exploration in humans. Combining a virtual reality task with indices of exploration complexity, we found that pre-exploration curiosity states predicted how much individuals spatially explored environments, whereas markers of visual exploration determined post-exploration feelings of interest. Moreover, individual differences in curiosity traits, particularly Stress Tolerance, modulated the relationship between curiosity and spatial exploration, suggesting the capacity to cope with uncertainty enhances the curiosity-exploration link. Furthermore, both curiosity and spatial exploration predicted how precisely participants could recall spatial-relational details of the environment, as measured by a sketch map task. These results provide new evidence for a link between curiosity and exploratory behaviour, and how curiosity might shape cognitive map formation.
Recent advances in high-entropy superconductors
High-entropy materials (HEMs) exhibit significant potential for diverse applications owing to their tunable properties, which can be precisely engineered through the selection of specific elements and the modification of stoichiometric ratios. The discovery of superconductivity in HEMs has garnered considerable interest, leading to accelerated advancements in this field in recent years. This review provides an overview of various high-entropy superconductors, highlighting their distinct features, such as disordered crystal structure, factors affecting the critical temperature (Tc), unconventional superconductivity, and topological bands. A perspective on this field is subsequently proposed, drawing upon insights from recently published academic literature. The objective is to provide researchers with a comprehensive and clear understanding of the newly developed high-entropy superconductivity, thereby catalyzing further advancements in this domain.
First-principles and machine-learning approaches for interpreting and predicting the properties of MXenes
MXenes are a versatile family of 2D inorganic materials with applications in energy storage, shielding, sensing, and catalysis. This review highlights computational studies using density functional theory and machine-learning approaches to explore their structure (stacking, functionalization, doping), properties (electronic, mechanical, magnetic), and application potential. Key advances and challenges are critically examined, offering insights into applying computational research to transition these materials from the lab to practical use.
High-throughput synthesis of high-entropy alloys via parallelized electric field assisted sintering
Materials discovery and design is an expensive and time-consuming process, though necessary to advance many engineering fields. In this work, a novel tooling design is utilized in conjunction with electric field assisted sintering (EFAS) to effectively create a new high-throughput synthesis technique: parallelized EFAS. Through this technique, a wide range of material compositions and geometries can be synthesized in parallel as isolated samples or as part of contiguous arrays. Multiple tooling designs are explored to examine both the flexibility and limitations of the technique. A series of increasing complex alloys is produced simultaneously using in situ alloying, beginning with pure Ni and adding equimolar constituents up to the septenary high-entropy alloy AlCoCrCuFeMnNi. Microstructural characterization reveals each sample is effectively fully dense and chemically homogenous while exhibiting phases in agreement with CALPHAD predictions. Scalability of parallelized EFAS is then experimentally demonstrated and the implications for materials discovery and automation are discussed.
Evolution of temporomandibular joint reconstruction: from autologous tissue transplantation to alloplastic joint replacement
The reconstruction of the temporomandibular joint presents a multifaceted clinical challenge in the realm of head and neck surgery, underscored by its relatively infrequent occurrence and the lack of comprehensive clinical guidelines. This review aims to elucidate the available approaches for TMJ reconstruction, with a particular emphasis on recent groundbreaking advancements. The current spectrum of TMJ reconstruction integrates diverse surgical techniques, such as costochondral grafting, coronoid process grafting, revascularized fibula transfer, transport distraction osteogenesis, and alloplastic TMJ replacement. Despite the available options, a singular, universally accepted ‘gold standard’ for reconstructive techniques or materials remains elusive in this field. Our review comprehensively summarizes the current available methods of TMJ reconstruction, focusing on both autologous and alloplastic prostheses. It delves into the differences of each surgical technique and outlines the implications of recent technological advances, such as 3D printing, which hold the promise of enhancing surgical precision and patient outcomes. This evolutionary progress aims not only to improve the immediate results of reconstruction but also to ensure the long-term health and functionality of the TMJ, thereby improving the quality of life for patients with end-stage TMJ disorders.
Responses