Related Articles
Cancer cells sense solid stress to enhance metastasis by CKAP4 phase separation-mediated microtubule branching
Solid stress, originating from rigid and elastic components of extracellular matrix and cells, is a typical physical hallmark of tumors. Mounting evidence indicates that elevated solid stress drives metastasis and affects prognosis. However, the molecular mechanism of how cancer cells sense solid stress, thereby exacerbating malignancy, remains elusive. In this study, our clinical data suggest that elevated stress in metastatic solid tumors is highly associated with the expression of cytoskeleton-associated protein 4 (CKAP4). Intriguingly, CKAP4, as a sensitive intracellular mechanosensor, responds specifically to solid stress in a subset of studied tumor micro-environmental elements through liquid–liquid phase separation. These micron-scaled CKAP4 puncta adhere tightly onto microtubules and dramatically reorchestrate their curvature and branching to enhance cell spreading, which, as a result, boosts cancer cell motility and facilitates distant metastasis in vivo. Mechanistically, the intrinsically disordered region 1 (IDR1) of CKAP4 binds to microtubules, while IDR2 governs phase separation due to the Cav1.2-dependent calcium influx, which collectively remodels microtubules. These findings reveal an unprecedented mechanism of how cancer cells sense solid stress for cancer malignancy and bridge the gap between cancer physics and cancer cell biology.
Immobility of isolated swarmer cells due to local liquid depletion
Bacterial swarming is a complex phenomenon in which thousands of self-propelled rod-shaped cells move coherently on surfaces, providing a highly studied example of active matter. However, bacterial swarming is different from most studied examples of active systems because single isolated cells do not move, while clusters do. The biophysical aspects underlying this behavior are unclear. In this work we explore the case of low local cell densities, where single cells become temporarily immobile. We show that immobility is related to local depletion of liquid. In addition, it is also associated with the state of the flagella. Specifically, the flagellar bundles at (temporarily) liquid-depleted regions are completely spread-out. Our results suggest that dry models of self-propelled agents, which only consider steric alignments and neglect hydrodynamic and hydration effects, are oversimplified and are not sufficient to describe swarming bacteria.
Advancing robust all-weather desalination: a critical review of emerging photothermal evaporators and hybrid systems
All-weather solar-driven desalination systems, integrating photothermal evaporators with hybrid technologies, present a sustainable, cost-effective, and high-efficiency strategy for freshwater production. Despite significant advancements, previous reviews have predominantly focused on daytime evaporation, neglecting the broader scope of all-weather seawater evaporation. This review provides a comprehensive examination of the current status of all-weather seawater evaporators and their hybrid systems. Initially, the review details the system’s composition and operating principles, as well as the design criteria for high-performance evaporators. It then goes over various common photothermal conversion materials for seawater desalination, with a particular emphasis on those materials tailored for all-weather applications. It also offers an in-depth overview to the developed photothermal hybrid systems for all-weather seawater evaporation, including their working principles, the efficiency of evaporation across the day-night cycle, and their practical applications. Lastly, the existing challenges and potential research opportunities are thoroughly discussed.
Comparative analysis of nanomechanical resonators: sensitivity, response time, and practical considerations in photothermal sensing
Nanomechanical photothermal sensing has significantly advanced single-molecule/particle microscopy and spectroscopy, and infrared detection. In this approach, the nanomechanical resonator detects shifts in resonant frequency due to photothermal heating. However, the relationship between photothermal sensitivity, response time, and resonator design has not been fully explored. This paper compares three resonator types – strings, drumheads, and trampolines – to explore this relationship. Through theoretical modeling, experimental validation, and finite element method simulations, we find that strings offer the highest sensitivity (with a noise equivalent power of 280 fW/Hz1/2 for strings made of silicon nitride), while drumheads exhibit the fastest thermal response. The study reveals that photothermal sensitivity correlates with the average temperature rise and not the peak temperature. Finally, the impact of photothermal back-action is discussed, which can be a major source of frequency instability. This work clarifies the performance differences and limits among resonator designs and guides the development of advanced nanomechanical photothermal sensors, benefiting a wide range of applications.
Diversity of biomass usage pathways to achieve emissions targets in the European energy system
Biomass is a versatile renewable energy source with applications across the energy system, but it is a limited resource and its usage needs prioritization. We use a sector-coupled European energy system model to explore near-optimal solutions for achieving emissions targets. We find that provision of biogenic carbon has higher value than bioenergy provision. Energy system costs increase by 20% if biomass is excluded at a net-negative (−110%) emissions target and by 14% at a net-zero target. Dispatchable bioelectricity covering ~1% of total electricity generation strengthens supply reliability. Otherwise, it is not crucial in which sector biomass is used, if combined with carbon capture to enable negative emissions and feedstock for e-fuel production. A shortage of renewable electricity or hydrogen supply primarily increases the value of using biomass for fuel production. Results are sensitive to upstream emissions of biomass, carbon sequestration capacity and costs of direct air capture.
Responses