Related Articles
Biodiversity offsets, their effectiveness and their role in a nature positive future
Biodiversity offsetting is a mechanism for addressing the impacts of development projects on biodiversity, but the practice remains controversial and its effectiveness generally poor. In the context of the Global Biodiversity Framework and the emergence of new approaches for mitigating damage, we need to learn from the past. In this Review, we explore biodiversity offsetting, its effectiveness and its future prospects, especially in relation to ‘nature positive’ goals. Offsets often fall short of their stated goal: to achieve at least no net loss of affected biodiversity. However, such failures are prominent because offsets have more explicit quantitative objectives than most other conservation approaches, whose effectiveness is also variable. These clear objectives provide the potential for the transparency that alternative approaches to addressing negative human impacts on biodiversity lack. Unfortunately, promising alternatives are scarce, so offsetting and offset-like mechanisms remain a necessary component of strategies to halt and reverse nature loss. However, improving their performance is essential. No quick and easy solution exists; instead, upholding best practice principles and rigorous implementation — including in the face of challenges from opposing narratives and interest groups — remains key.
The current state, opportunities and challenges for upscaling private investment in biodiversity in Europe
European countries have committed to ambitious upscaling of privately funded nature conservation. We review the status and drivers of biodiversity finance in Europe. By implementing semistructured interviews with 25 biodiversity finance key informants and three focus groups across Europe, we explore opportunities and challenges for upscaling private investment in nature. Opportunities arise from macroeconomic and regulatory changes, along with various technological and financial innovations and growing professional experience. However, persistent barriers to upscaling include the ongoing lack of highly profitable investment opportunities and the multitude of risks facing investors, including political, ecological and reputational risks influencing supply and demand of investment opportunities. Public policy plays the foundational role in creating and hindering these mechanisms. Public policy can create nature markets and investment opportunities, meanwhile agricultural subsidies and poor coordination between public funding sources undermine the supply of return-seeking investment opportunities. Investors demand derisking investments from uncertainties; in part caused by political uncertainty. These markets require profound state intervention to enable upscaling whilst achieving positive ecological outcomes; private investment will probably not upscale without major public policy change and public investment.
Pathogens and planetary change
Emerging infectious diseases, biodiversity loss, and anthropogenic environmental change are interconnected crises with massive social and ecological costs. In this Review, we discuss how pathogens and parasites are responding to global change, and the implications for pandemic prevention and biodiversity conservation. Ecological and evolutionary principles help to explain why both pandemics and wildlife die-offs are becoming more common; why land-use change and biodiversity loss are often followed by an increase in zoonotic and vector-borne diseases; and why some species, such as bats, host so many emerging pathogens. To prevent the next pandemic, scientists should focus on monitoring and limiting the spread of a handful of high-risk viruses, especially at key interfaces such as farms and live-animal markets. But to address the much broader set of infectious disease risks associated with the Anthropocene, decision-makers will need to develop comprehensive strategies that include pathogen surveillance across species and ecosystems; conservation-based interventions to reduce human–animal contact and protect wildlife health; health system strengthening; and global improvements in epidemic preparedness and response. Scientists can contribute to these efforts by filling global gaps in disease data, and by expanding the evidence base for disease–driver relationships and ecological interventions.
Successes and failures of conservation actions to halt global river biodiversity loss
To address the losses of river biodiversity worldwide, various conservation actions have been implemented to promote recovery of species and ecosystems. In this Review, we assess the effectiveness of these actions globally and regionally, and identify causes of success and failure. Overall, actions elicit little improvement in river biodiversity, in contrast with reports from terrestrial and marine ecosystems. This lack of improvement does not necessarily indicate a failure of any individual action. Rather, it can be attributed in part to remaining unaddressed stressors driving biodiversity loss; a poor match between the spatial scale of action and the scale of the affected area; and absence of adequate monitoring, including insufficient timescales, missing reference and control sites or insufficient selection of targeted taxa. Furthermore, outcomes are often not reported and are unevenly distributed among actions, regions and organism groups. Expanding from local-scale actions to coordinated, transformative, catchment-scale management approaches shows promise for improving outcomes. Such approaches involve identifying major stressors, appropriate conservation actions and source populations for recolonization, as well as comprehensive monitoring, relevant legislation and engaging all stakeholders to promote the recovery of river biodiversity.
Harnessing artificial intelligence to fill global shortfalls in biodiversity knowledge
Large, well described gaps exist in both what we know and what we need to know to address the biodiversity crisis. Artificial intelligence (AI) offers new potential for filling these knowledge gaps, but where the biggest and most influential gains could be made remains unclear. To date, biodiversity-related uses of AI have largely focused on tracking and monitoring of wildlife populations. Rapid progress is being made in the use of AI to build phylogenetic trees and species distribution models. However, AI also has considerable unrealized potential in the re-evaluation of important ecological questions, especially those that require the integration of disparate and inherently complex data types, such as images, video, text, audio and DNA. This Review describes the current and potential future use of AI to address seven clearly defined shortfalls in biodiversity knowledge. Recommended steps for AI-based improvements include the re-use of existing image data and the development of novel paradigms, including the collaborative generation of new testable hypotheses. The resulting expansion of biodiversity knowledge could lead to science spanning from genes to ecosystems — advances that might represent our best hope for meeting the rapidly approaching 2030 targets of the Global Biodiversity Framework.
Responses