Related Articles

Chronobiotic and cytoprotective activity of melatonin in the cardiovascular system. Doses matter

A circadian disruption, manifested by disturbed sleep and low-grade inflammation, is commonly seen in cardiovascular diseases (CVDs). The decline in plasma melatonin, which is a conserved phylogenetic molecule across all known aerobic creatures, is also a common feature in CVDs. The daily evening pineal melatonin surge synchronizes both the central pacemaker located in the hypothalamic suprachiasmatic nuclei and myriads of cellular clocks in the periphery (“chronobiotic effect”). Melatonin also has cytoprotective properties, acting primarily not only as an antioxidant by buffering free radicals but also by regulating inflammation. In CVDs, exogenous melatonin administration decreases nocturnal hypertension, improves systolic and diastolic blood pressure, reduces the pulsatility index in the internal carotid artery, decreases platelet aggregation, and reduces serum catecholamine levels. Melatonin evokes an increase in parasympathetic activity in the heart. Allometric calculations based on animal research show that melatonin’s cytoprotective benefits in CVDs may require high doses to be fully manifested (in the 100–200 mg/day range). If melatonin is expected to improve health in CVDs, the low doses currently used in clinical trials (i.e., 2–10 mg) are presumably insufficient.

Melatonin’s role in the timing of sleep onset is conserved in nocturnal mice

Melatonin supplementation strengthens non‐restorative sleep rhythms and its temporal alignment in both humans and night-active rodents. Of note, although the sleep cycle is reversed in day-active and night-active (nocturnal) mammals, both, produce melatonin at night under the control of the circadian clock. The effects of exogenous melatonin on sleep and sleepiness are relatively clear, but its endogenous role in sleep, particularly, in timing sleep onset (SO), remains poorly understood. We show in nocturnal mice that the increases in mid-nighttime sleep episodes, and the mid-nighttime decline in activity, are coupled to nighttime melatonin signaling. Furthermore, we show that endogenous melatonin modulates SO by reducing the threshold for wake-to-sleep transitioning. Such link between melatonin and SO timing may explain phenomena such as increased sleep propensity in circadian rhythm sleep disorders and chronic insomnia in patients with severely reduced nocturnal melatonin levels. Our findings demonstrate that melatonin’s role in sleep is evolutionarily conserved, effectively challenging the argument that melatonin cannot play a major role in sleep regulation in nocturnal mammals, where the main activity phase coincides with high melatonin levels.

Melatonin affects trophoblast epithelial-to-mesenchymal transition and oxidative damage resistance by modulating GDF15 expression to promote embryo implantation

Melatonin is widely observed in the female reproductive system and regulates trophoblast cell functions, but its effects on embryo implantation and underlying mechanisms are not well understood. By constructing an in vitro embryo culture model, we found that melatonin enhances migration and implantation in human and mouse trophoblast cells. It also significantly promoted HTR-8/SVneo cell proliferation, inhibited apoptosis, enhanced migration, and mitigated oxidative damage. Further investigation revealed that melatonin promoted trophoblast cell migration and increased the in vitro implantation rate of HTR-8/SVneo spheroids by promotes epithelial-mesenchymal transition (EMT) via the growth differentiation factor 15 (GDF15)–mothers against decapentaplegic homolog 2/3 (SMAD2/3) pathway. Additionally, melatonin increased the levels of glutathione peroxidase 4 (GPX4) and glutathione (GSH) in HTR-8/SVneo cells by upregulating the expression of GDF15, inhibiting reactive oxygen species (ROS) accumulation, and increasing mitochondrial membrane potential, thus suppressing apoptosis during oxidative stress. In conclusion, melatonin promotes EMT in trophoblast cells via GDF15-SMAD2/3 pathway and partially induces the expression of GPX4 through GDF15 to enhance oxidative damage resistance in trophoblast cells. These findings highlight melatonin’s regulatory role in embryo implantation and suggest new avenues for exploring its biological effects in reproduction and clinical applications.

Pathogenesis of aquatic bird bornavirus 1 in turkeys of different age

Aquatic bird bornavirus 1 (ABBV1), an orthobornavirus in the family Bornaviridae, displays a broad host range among avian species, including poultry. The pathogenesis of orthobornaviruses, at least in mammals and psittacines, appears to be mediated by the host immune response against the infected nervous tissue, with younger animals showing a milder disease due to immune tolerance. Here, we tested the ability of ABBV1 to infect domestic turkeys (Meleagris gallopavo), with a focus on evaluating the impact of age at infection. Cohorts of 6-week-old (old) and day-old (young) male turkeys were divided into virus-inoculated and control groups, and kept for up to 12 weeks. Results showed that turkeys of both ages were susceptible to ABBV1 infection by intramuscular administration, following a centripetal and limited centrifugal spread, although infection appeared delayed in old compared to young birds. Notably, only young turkeys developed clinical signs and more frequent inflammation of the central nervous system, indicating that infection at a very early age is unlikely to induce tolerance to ABBV1 infection.

Brainstem serotonin amplifies nociceptive transmission in a mouse model of Parkinson’s disease

Parkinson’s disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson’s disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson’s disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation. Mice exhibited mechanical hypersensitivity associated with hyperexcitability of neurons in the dorsal horn of the spinal cord (DHSC). Serotonin (5-HT) levels increased in the spinal cord, correlating with reduced tyrosine hydroxylase (TH) immunoreactivity in the nucleus raphe magnus (NRM) and increased excitability of 5-HT neurons. Selective optogenetic inhibition of 5-HT neurons attenuated mechanical hypersensitivity and reduced DHSC hyperexcitability. In addition, the blockade of 5-HT2A and 5-HT3 receptors reduced mechanical hypersensitivity. These results reveal, for the first time, that PD-like dopamine depletion triggers spinal-mediated mechanical hypersensitivity, associated with serotonergic hyperactivity in the NRM, opening up new therapeutic avenues for Parkinson’s disease-associated pain targeting the serotonergic systems.

Responses

Your email address will not be published. Required fields are marked *