Related Articles
Spin polarised quantised transport via one-dimensional nanowire-graphene contacts
Graphene spintronics offers a promising route to achieve low power 2D electronics for next generation classical and quantum computation. As device length scales are reduced to the limit of the electron mean free path, the transport mechanism crosses over to the ballistic regime. However, ballistic transport has yet to be shown in a graphene spintronic device, a necessary step towards realising ballistic spintronics. Here, we report ballistic injection of spin polarised carriers via one-dimensional contacts between magnetic nanowires and a high mobility graphene channel. The nanowire-graphene interface defines an effective constriction that confines charge carriers over a length scale smaller than that of their mean free path. This is evidenced by the observation of quantised conductance through the contacts with no applied magnetic field and a transition into the quantum Hall regime with increasing field strength. These effects occur in the absence of any constriction in the graphene itself and occur across several devices with transmission probability in the range T = 0.08 − 0.30.
Switching on and off the spin polarization of the conduction band in antiferromagnetic bilayer transistors
Antiferromagnetic conductors with suitably broken spatial symmetries host spin-polarized bands, which lead to transport phenomena commonly observed in metallic ferromagnets. In bulk materials, it is the given crystalline structure that determines whether symmetries are broken and spin-polarized bands are present. Here we show that, in the two-dimensional limit, an electric field can control the relevant symmetries. To this end, we fabricate a double-gate transistor based on bilayers of van der Waals antiferromagnetic semiconductor CrPS4 and show how a perpendicular electric displacement field can switch the spin polarization of the conduction band on and off. Because conduction band states with opposite spin polarizations are hosted in the different layers and are spatially separated, these devices also give control over the magnetization of the electrons that are accumulated electrostatically. Our experiments show that double-gated CrPS4 transistors provide a viable platform to create gate-induced conductors with near unity spin polarization at the Fermi level, as well as devices with a full electrostatic control of the total magnetization of the system.
Current-induced motion of nanoscale magnetic torons over the wide range of the Hall angle
Current-driven dynamics of topological spin textures plays a pivotal role in potential applications for electronic devices. While two-dimensional magnetic skyrmions have garnered significant interest, their practical use is hindered by the skyrmion Hall effect—a transverse motion to the current direction that occurs as a counteraction to the topological Hall effect of electrons arising from the Berry phase effect. Here, we explore current-driven dynamics of three-dimensional topological spin textures, magnetic torons, composed of layered skyrmions with two singularities called Bloch points at their ends. Through extensive numerical simulations, we show that torons exhibit a unique Hall motion ranging from the zero Hall effect, a purely longitudinal motion, to the perfect Hall effect, a purely transverse motion accompanied by no longitudinal motion. Such flexible and controllable behaviors stem from anisotropic potential barriers on the discrete lattice for nanoscale torons. Our results provide a method to probe the topology of three-dimensional magnetic textures and contribute to advanced topological spintronics beyond the realm of skyrmions.
Annealing-inspired training of an optical neural network with ternary weights
Artificial neural networks (ANNs) represent a fundamentally connectionist and distributed approach to computing, and as such they differ from classical computers that utilize the von Neumann architecture. This has revived research interest in new unconventional hardware for more efficient ANNs rather than emulating them on traditional machines. To fully leverage ANNs, optimization algorithms must account for hardware limitations and imperfections. Photonics offers a promising platform with scalability, speed, energy efficiency, and parallel processing capabilities. However, fully autonomous optical neural networks (ONNs) with in-situ learning are scarce. In this work, we propose and demonstrate a ternary weight high-dimensional semiconductor laser-based ONN and introduce a method for achieving ternary weights using Boolean hardware, enhancing the ONN’s information processing capabilities. Furthermore, we design an in-situ optimization algorithm that is compatible with both Boolean and ternary weights. Our algorithm results in benefits, both in terms of convergence speed and performance. Our experimental results show the ONN’s long-term inference stability, with a consistency above 99% for over 10 h. Our work is of particular relevance in the context of in-situ learning under restricted hardware resources, especially since minimizing the power consumption of auxiliary hardware is crucial to preserving efficiency gains achieved by non-von Neumann ANN implementations.
Controlling Coulomb correlations and fine structure of quasi-one-dimensional excitons by magnetic order
Many surprising properties of quantum materials result from Coulomb correlations defining electronic quasiparticles and their interaction chains. In van der Waals layered crystals, enhanced correlations have been tailored in reduced dimensions, enabling excitons with giant binding energies and emergent phases including ferroelectric, ferromagnetic and multiferroic orders. Yet, correlation design has primarily relied on structural engineering. Here we present quantitative experiment–theory proof that excitonic correlations can be switched through magnetic order. By probing internal Rydberg-like transitions of excitons in the magnetic semiconductor CrSBr, we reveal their binding energy and a dramatic anisotropy of their quasi-one-dimensional orbitals manifesting in strong fine-structure splitting. We switch the internal structure from strongly bound, monolayer-localized states to weakly bound, interlayer-delocalized states by pushing the system from antiferromagnetic to paramagnetic phases. Our analysis connects this transition to the exciton’s spin-controlled effective quantum confinement, supported by the exciton’s dynamics. In future applications, excitons or even condensates may be interfaced with spintronics; extrinsically switchable Coulomb correlations could shape phase transitions on demand.
Responses