Related Articles

Plastic recycling: A panacea or environmental pollution problem

Increasing plastic waste is a critical global challenge to ecological and human health requiring focused solutions to reduce omnipresent plastic pollution in the environment. While recycling has been touted as one solution to counter plastic waste and resource utilization, it has been largely ineffective in offsetting the impact of rising global plastic production of more than 400 million metric tonnes annually, due to low global recycling rates of only 9%. Over three decades since implementing plastic resin codes, recycling has favoured thermoplastics, neglecting thermoset plastics. There is a constant need to enhance overall recycling efficiency by exploring advanced methods, as enormous gaps exist in fully unlocking the potential of plastic recycling. We identify critical gaps associated with plastic waste recycling and its potential environmental impacts. We discuss substantial progress in recycling technology, designs-for-recyclability with controlled chemical use, and economic incentives to expand markets for recycled plastics and to curb plastic leakage into the environment. Additionally, we highlight some emerging strategies and legally binding international policy instruments, such as the Global Plastics Treaty that require further development to reduce plastic waste and improve plastic recyclability.

Plastics matter in the food system

Agriculture and food systems are major sources of plastic pollution but they are also vulnerable to their diverse lifecycle impacts. However, this problem is not well-recognized in global policy and scientific discourse, agendas, and monitoring of food systems. The United Nations-led Global Plastics Treaty, which has been under negotiation since 2022, is a critical opportunity to address pollution across the entire plastics lifecycle for more sustainable and resilient food systems. Here, we offer aspirational indicators for future monitoring of food systems’ plastics related to (1) plastic polymers and chemicals, (2) land use, (3) trade and waste, and (4) environmental and human health. We call for interdisciplinary research collaborations to continue improving and harmonising the evidence base necessary to track and trace plastics and plastic chemicals in food systems. We also highlight the need for collaboration across disciplines and sectors to tackle this urgent challenge for biodiversity, climate change, food security and nutrition, health and human rights at a whole systems level.

Enhancing sub-seasonal soil moisture forecasts through land initialization

We assess the relative contributions of land, atmosphere, and oceanic initializations to the forecast skill of root zone soil moisture (SM) utilizing the Community Earth System Model version 2 Sub to Seasonal climate forecast experiments (CESM2-S2S). Using eight sensitivity experiments, we disentangle the individual impacts of these three components and their interactions on the forecast skill for the contiguous United States. The CESM2-S2S experiment, in which land states are initialized while atmosphere and ocean remain in their climatological states, contributes 91 ± 3% of the total sub-seasonal forecast skill across varying soil moisture conditions during summer and winter. Most SM predictability stems from the soil moisture memory effect. Additionally, land-atmosphere coupling contributes 50% of the land-driven soil moisture predictability. A comparative analysis of the CESM2-S2S SM forecast skills against two other climate models highlights the potential for enhancing soil moisture forecast accuracy by improving the representation of soil moisture-precipitation feedback.

Land use conversion increases network complexity and stability of soil microbial communities in a temperate grassland

Soils harbor highly diverse microbial communities that are critical to soil health, but agriculture has caused extensive land use conversion resulting in negative effects on critical ecosystem processes. However, the responses and adaptations of microbial communities to land use conversion have not yet been understood. Here, we examined the effects of land conversion for long-term crop use on the network complexity and stability of soil microbial communities over 19 months. Despite reduced microbial biodiversity in comparison with native tallgrass prairie, conventionally tilled (CT) cropland significantly increased network complexity such as connectivity, connectance, average clustering coefficient, relative modularity, and the number of species acting at network hubs and connectors as well as resulted in greater temporal variation of complexity indices. Molecular ecological networks under CT cropland became significantly more robust and less vulnerable, overall increasing network stability. The relationship between network complexity and stability was also substantially strengthened due to land use conversion. Lastly, CT cropland decreased the number of relationships between network structure and environmental properties instead being strongly correlated to management disturbances. These results indicate that agricultural disturbance generally increases the complexity and stability of species “interactions”, possibly as a trade-off for biodiversity loss to support ecosystem function when faced with frequent agricultural disturbance.

Water and wastewater infrastructure inequity in unincorporated communities

Uneven access to water and wastewater infrastructure is shaped by local governance. A substantial number of U.S. households lack adequate access and the U.S. is one of the few countries with large populations living outside of city bounds, in unincorporated areas. Few studies address how infrastructure services and local governance are intertwined at a regional scale. We examine the connection between incorporation status and access to centralized infrastructure, using negative binomial regression. A novel dataset informs this analysis, comprised of 31,383 Census block groups located in nine states representing over 25% of the national population. We find evidence that inequities in access are associated with unincorporated status and poverty rates. Sewer coverage rates are significantly lower for unincorporated communities in close proximity to municipal boundaries. Infrastructure equity could be improved by targeting high-poverty unincorporated communities, addressing challenges with noncontiguous service areas, and strengthening regional water planning and participatory governance.

Responses

Your email address will not be published. Required fields are marked *