Related Articles
Uneven diffusion: a multi-scale analysis of rural settlement evolution and its driving forces in China from 2000–2020
In recent years, the spatial and temporal patterns of rural settlement expansion in China have shifted significantly due to rapid urbanization and industrialization. This study examines rural settlement expansion in China from 2000 to 2020, using the Landscape Expansion Index (LEI) and GIS spatial analysis to assess changes in land use scale and related factors. The findings reveal that: (1) From 2000 to 2020, China saw a rapid and large-scale expansion of rural settlements, with the total area increasing by 40,322.74 km², 87.42% of which resulted from outlying expansion, indicating a clear diffusion trend. (2) The movement of rural settlements has predominantly followed a southeast–northwest axis, focusing on the middle reaches of the Yangtze River, with a clockwise rotation shift. (3) Settlement expansion has been primarily concentrated in low-elevation, waterfront, and road-adjacent areas, where GDP per capita and population density significantly influence settlement patterns. These results offer valuable insights for optimizing the spatial distribution and industrial restructuring of rural settlements, as well as for guiding rural spatial planning and industrial policy development.
Differences in walking access to healthcare facilities between formal and informal areas in 19 sub-Saharan African cities
Spatial accessibility to healthcare is a critical factor in ensuring equitable health outcomes. While studies on a global, continental, and national level exist, our understanding of intra-urban differences, particularly between formal and informal areas within cities in sub-Saharan Africa, remains limited.
The decreasing housing utilization efficiency in China’s cities
‘Ghost cities’ are a well-known phenomenon of (almost) complete vacancy of urban living space in China. Underutilization of urban living space, however, is far more common than complete vacancy. Here we propose the concept of housing utilization efficiency (HUE) and present the following findings: (1) the overall HUE in China’s highly urbanized areas decreased from 84% in 2010 to 78% in 2020, (2) the HUE in central, old urban areas was generally lower than that in the outer layers of urban areas and declined more from 2010 to 2020 and (3) four development types are found to represent different patterns of urban population movement, urban housing growth and HUE change at the intraurban level. These findings provide comprehensive insight into the discrepancies between urban housing supply and demand in China and highlight their connections to the country’s particular urbanization characteristics and policies, which are crucial for future housing development and planning.
Urban growth strategy in Greater Sydney leads to unintended social and environmental challenges
Cities have advanced in terms of economic and social status over the past five decades, improving the living conditions of hundreds of millions of people. However, population growth and urban expansion have put pressure on social and environmental conditions. This study examines urban policymakers’ perceptions about causal relationships in the urban system as revealed in urban planning reports. Here we analyzed 500 pages from published urban plans of Greater Sydney between 1968 and 2018 and coded the text into causal maps. The findings show that policymakers adopted a dominant urban development strategy over the past 50 years to pursue economic and public infrastructure growth. Over time, this growth strategy resulted in a number of social and environmental challenges that negatively impacted societal well-being. Although policymakers eventually recognized the seriousness of social and environmental challenges, they never attempted to fundamentally change the dominant growth strategy. Instead, policymakers sought to address the challenges (that is, symptoms) by responding to each issue piecemeal.
Decarbonizing urban residential communities with green hydrogen systems
Community green hydrogen systems, typically consisting of rooftop photovoltaic panels paired with hybrid hydrogen-battery storage, offer urban environments with improved access to clean, on-site energy. However, economically viable pathways for deploying hydrogen storage within urban communities remain unclear. Here we develop a bottom-up energy model linking climate, human behavior and community characteristics to assess the impacts of pathways for deploying community green hydrogen systems in North America from 2030 to 2050. We show that for the same community conditions, the cost difference between the best and worst pathways can be as high as 60%. In particular, the household centralized option emerges as the preferred pathway for most communities. Furthermore, enhancing energy storage demands within these deployment pathways can reduce system design costs up to fourfold. To achieve cost-effective urban decarbonization, the study underscores the critical role of selecting the right deployment pathway and prioritizing the integration of increased energy storage in pathway designs.
Responses