Related Articles

Cellpose3: one-click image restoration for improved cellular segmentation

Generalist methods for cellular segmentation have good out-of-the-box performance on a variety of image types; however, existing methods struggle for images that are degraded by noise, blurring or undersampling, all of which are common in microscopy. We focused the development of Cellpose3 on addressing these cases and here we demonstrate substantial out-of-the-box gains in segmentation and image quality for noisy, blurry and undersampled images. Unlike previous approaches that train models to restore pixel values, we trained Cellpose3 to output images that are well segmented by a generalist segmentation model, while maintaining perceptual similarity to the target images. Furthermore, we trained the restoration models on a large, varied collection of datasets, thus ensuring good generalization to user images. We provide these tools as ‘one-click’ buttons inside the graphical interface of Cellpose as well as in the Cellpose API.

Interracial contact shapes racial bias in the learning of person-knowledge

During impression formation, perceptual cues facilitate social categorization while person-knowledge can promote individuation and enhance person memory. Although there is extensive literature on the cross-race recognition deficit, observed when racial ingroup faces are recognized more than outgroup faces, it is unclear whether a similar deficit exists when recalling individuating information about outgroup members. To better understand how perceived race can bias person memory, the present study examined how self-identified White perceivers’ interracial contact impacts learning of perceptual cues and person-knowledge about perceived Black and White others over five sessions of training. While person-knowledge facilitated face recognition accuracy for low-contact perceivers, face recognition accuracy did not differ for high-contact perceivers based on person-knowledge availability. The results indicate a bias towards better recall of ingroup person knowledge, which decreased for high-contact perceivers across the five-day training but simultaneously increased for low-contact perceivers. Overall, the elimination of racial bias in recall of person-knowledge among high-contact perceivers amid a persistent cross-race deficit in face recognition suggests that contact may have a greater impact on the recall of person-knowledge than on face recognition.

Segment Anything for Microscopy

Accurate segmentation of objects in microscopy images remains a bottleneck for many researchers despite the number of tools developed for this purpose. Here, we present Segment Anything for Microscopy (μSAM), a tool for segmentation and tracking in multidimensional microscopy data. It is based on Segment Anything, a vision foundation model for image segmentation. We extend it by fine-tuning generalist models for light and electron microscopy that clearly improve segmentation quality for a wide range of imaging conditions. We also implement interactive and automatic segmentation in a napari plugin that can speed up diverse segmentation tasks and provides a unified solution for microscopy annotation across different microscopy modalities. Our work constitutes the application of vision foundation models in microscopy, laying the groundwork for solving image analysis tasks in this domain with a small set of powerful deep learning models.

Advancing extrapolative predictions of material properties through learning to learn using extrapolative episodic training

Recent advancements in machine learning have demonstrated its potential to significantly accelerate the discovery of new materials. Central to this progress is the development of rapidly computable property predictors, which allow identifying novel materials with the desired properties from vast material spaces. However, the limited availability of data resources poses a significant challenge in data-driven material research, particularly hindering the exploration of innovative materials beyond the boundaries of existing data. Although machine-learning predictors are inherently interpolative, establishing a general methodology to create an extrapolative predictor remains a fundamental challenge. In this study, we leveraged the attention-based architecture of neural networks and a meta-learning algorithm to enhance extrapolative generalization capabilities. Meta-learners trained repeatedly on arbitrarily generated extrapolative tasks show outstanding generalization for unexplored material spaces. Through the tasks of predicting the physical properties of polymeric materials and hybrid organic–inorganic perovskites, we highlight the potential of such extrapolatively trained models, particularly their ability to rapidly adapt to unseen material domains in transfer-learning scenarios.

Probing out-of-distribution generalization in machine learning for materials

Scientific machine learning (ML) aims to develop generalizable models, yet assessments of generalizability often rely on heuristics. Here, we demonstrate in the materials science setting that heuristic evaluations lead to biased conclusions of ML generalizability and benefits of neural scaling, through evaluations of out-of-distribution (OOD) tasks involving unseen chemistry or structural symmetries. Surprisingly, many tasks demonstrate good performance across models, including boosted trees. However, analysis of the materials representation space shows that most test data reside within regions well-covered by training data, while poorly-performing tasks involve data outside the training domain. For these challenging tasks, increasing training size or time yields limited or adverse effects, contrary to traditional neural scaling trends. Our findings highlight that most OOD tests reflect interpolation, not true extrapolation, leading to overestimations of generalizability and scaling benefits. This emphasizes the need for rigorously challenging OOD benchmarks.

Responses

Your email address will not be published. Required fields are marked *