Related Articles

Cardiac conduction system regeneration prevents arrhythmias after myocardial infarction

Arrhythmias are a hallmark of myocardial infarction (MI) and increase patient mortality. How insult to the cardiac conduction system causes arrhythmias following MI is poorly understood. Here, we demonstrate conduction system restoration during neonatal mouse heart regeneration versus pathological remodeling at non-regenerative stages. Tissue-cleared whole-organ imaging identified disorganized bundling of conduction fibers after MI and global His–Purkinje disruption. Single-cell RNA sequencing (scRNA-seq) revealed specific molecular changes to regenerate the conduction network versus aberrant electrical alterations during fibrotic repair. This manifested functionally as a transition from normal rhythm to pathological conduction delay beyond the regenerative window. Modeling in the infarcted human heart implicated the non-regenerative phenotype as causative for heart block, as observed in patients. These findings elucidate the mechanisms underpinning conduction system regeneration and reveal how MI-induced damage elicits clinical arrhythmogenesis.

Engineering bone/cartilage organoids: strategy, progress, and application

The concept and development of bone/cartilage organoids are rapidly gaining momentum, providing opportunities for both fundamental and translational research in bone biology. Bone/cartilage organoids, essentially miniature bone/cartilage tissues grown in vitro, enable the study of complex cellular interactions, biological processes, and disease pathology in a representative and controlled environment. This review provides a comprehensive and up-to-date overview of the field, focusing on the strategies for bone/cartilage organoid construction strategies, progresses in the research, and potential applications. We delve into the significance of selecting appropriate cells, matrix gels, cytokines/inducers, and construction techniques. Moreover, we explore the role of bone/cartilage organoids in advancing our understanding of bone/cartilage reconstruction, disease modeling, drug screening, disease prevention, and treatment strategies. While acknowledging the potential of these organoids, we discuss the inherent challenges and limitations in the field and propose potential solutions, including the use of bioprinting for organoid induction, AI for improved screening processes, and the exploration of assembloids for more complex, multicellular bone/cartilage organoids models. We believe that with continuous refinement and standardization, bone/cartilage organoids can profoundly impact patient-specific therapeutic interventions and lead the way in regenerative medicine.

Sensing-actuating integrated asymmetric multilayer hydrogel muscle for soft robotics

Achieving autonomously responding to external stimuli and providing real-time feedback on their motion state are key challenges in soft robotics. Herein, we propose an asymmetric three-layer hydrogel muscle with integrated sensing and actuating performances. The actuating layer, made of p(NIPAm-HEMA), features an open pore structure, enabling it to achieve 58% volume shrinkage in just 8 s. The customizable heater allows for efficient programmable deformation of the actuating layer. A strain-responsive hydrogel layer, with a linear response of up to 50% strain, is designed to sense the deformation process. Leveraging these actuating and sensing capabilities, we develop an integrated hydrogel muscle that can recognize lifted objects with various weights or grasped objects of different sizes. Furthermore, we demonstrate a self-crawling robot to showcase the application potential of the hydrogel muscle for soft robots working in aquatic environments. This robot, featuring a modular distributed sensing and actuating layer, can autonomously move forward under closed-loop control based on self-detected resistance signals. The strategy of modular distributed stimuli-responsive sensing and actuating materials offers unprecedented capabilities for creating smart and multifunctional soft robotics.

A tip-tilt-piston electrothermal micromirror array with integrated position sensors

A tip-tilt-piston 3 × 3 electrothermal micromirror array (MMA) integrated with temperature field-based position sensors is designed and fabricated in this work. The size of the individual octagonal mirror plates is as large as 1.6 mm × 1.6 mm. Thermal isolation structures are embedded to reduce the thermal coupling among the micromirror units. Results show that each micromirror unit has a piston scan range of 218 μm and a tip-tilt optical scan angle of 21° at only 5 Vdc. The micromirrors also exhibit good dynamic performance with a rise time of 51.2 ms and a fall time of 53.6 ms. Moreover, the on-chip position sensors are proven to be capable for covering the full-range movement of the mirror plate, with the measured sensitivities of 1.5 mV/μm and 8.8 mV/° in piston sensing and tip-tilt sensing, respectively. Furthermore, the thermal crosstalk in an operating MMA has been experimentally studied. The measured results are promising thanks to the embedded thermal isolation structures.

Hollow fiber-based strain sensors with desirable modulus and sensitivity at effective deformation for dexterous electroelastomer cylindrical actuator

The electroelastomer cylindrical actuators, a typical representation of soft actuators, have recently aroused increasing interest owing to their advantages in flexibility, deformability, and spatial utilization rate. Proprioception is crucial for controlling and monitoring the shape and position of these actuators. However, most existing flexible sensors have a modulus mismatch with the actuation unit, hindering the free movement of these actuators. Herein, a low-modulus strain sensor based on laser-induced cellular graphitic flakes (CGF) onto the surface of hollow TPU fibers (HTF) is present. Through the electrostatic self-assembly technology, the flexible sensor features a unique hybrid sensing unit including soft HTF as substrate and rigid CGF as conductive path. As a result, the sensor simultaneously possesses desirable modulus (~0.155 MPa), a gauge factor of 220.3 (25% < ε < 50%), fast response/recovery behaviors (31/62 ms), and a low detection limit (0.1% strain). Integrating the sensor onto the electroelastomer cylindrical actuators enables precise measurement of deformation modes, directions, and quantity. As proof-of-concept demonstrations, a prototype soft robot with high-precision perception is successfully designed, achieving real-time detection of its deformations during the crawling process. Thus, the proposed scheme sheds new light on the development of intelligent soft robots.

Responses

Your email address will not be published. Required fields are marked *