Related Articles
Leveraging the collaborative power of AI and citizen science for sustainable development
Both artificial intelligence (AI) and citizen science hold immense potential for addressing major sustainability challenges from health to climate change. Alongside their individual benefits, when combined, they offer considerable synergies that can aid in both better monitoring of, and achieving, sustainable development. While AI has already been integrated into citizen science projects such as through automated classification and identification, the integration of citizen science approaches into AI is lacking. This integration has, however, the potential to address some of the major challenges associated with AI such as social bias, which could accelerate progress towards achieving sustainable development.
Trust in scientists and their role in society across 68 countries
Science is crucial for evidence-based decision-making. Public trust in scientists can help decision makers act on the basis of the best available evidence, especially during crises. However, in recent years the epistemic authority of science has been challenged, causing concerns about low public trust in scientists. We interrogated these concerns with a preregistered 68-country survey of 71,922 respondents and found that in most countries, most people trust scientists and agree that scientists should engage more in society and policymaking. We found variations between and within countries, which we explain with individual- and country-level variables, including political orientation. While there is no widespread lack of trust in scientists, we cannot discount the concern that lack of trust in scientists by even a small minority may affect considerations of scientific evidence in policymaking. These findings have implications for scientists and policymakers seeking to maintain and increase trust in scientists.
Environmental public health research at the U.S. Environmental Protection Agency: A blueprint for exposure science in a connected world
Exposure science plays an essential role in the U.S. Environmental Protection Agency’s (U.S. EPA) mission to protect human health and the environment. The U.S. EPA’s Center for Public Health and Environmental Assessment (CPHEA) within the Office of Research and Development (ORD) provides the exposure science needed to characterize the multifaceted relationships between people and their surroundings in support of national, regional, local and individual-level actions. Furthermore, exposure science research must position its enterprise to tackle the most pressing public health challenges in an ever-changing environment. These challenges include understanding and confronting complex human disease etiologies, disparities in the social environment, and system-level changes in the physical environment. Solutions will sustainably balance and optimize the health of people, animals, and ecosystems. Our objectives for this paper are to review the role of CPHEA exposure science research in various recent decision-making contexts, to present current challenges facing U.S. EPA and the larger exposure science field, and to provide illustrative case examples where CPHEA exposure science is demonstrating the latest methodologies at the intersection of these two motivations. This blueprint provides a foundation for applying exposomic tools and approaches to holistically understand real-world exposures so optimal environmental public health protective actions can be realized within the broader context of a One Health framework.
A manifesto for a globally diverse, equitable, and inclusive open science
The field of psychology has rapidly transformed its open science practices in recent years. Yet there has been limited progress in integrating principles of diversity, equity and inclusion. In this Perspective, we raise the spectre of Questionable Generalisability Practices and the issue of MASKing (Making Assumptions based on Skewed Knowledge), calling for more responsible practices in generalising study findings and co-authorship to promote global equity in knowledge production. To drive change, researchers must target all four key components of the research process: design, reporting, generalisation, and evaluation. Additionally, macro-level geopolitical factors must be considered to move towards a robust behavioural science that is truly inclusive, representing the voices and experiences of the majority world (i.e., low-and-middle-income countries).
Divergence over solutions to adapt or transform Australia’s Great Barrier Reef
There is increasing agreement among Australian policymakers and stakeholders that climate change is the biggest problem facing the Great Barrier Reef. However, little is known about whether this convergence shapes perspectives on solutions. To understand different actor perspectives on climate solutions for the Great Barrier Reef, we applied a ‘problem-solution’ framework employing Q-methodology to guide in-depth interviews with engaged actors. We found that despite growing convergence over the problem, significant divergence over the solutions remains. We identified six generalised perspectives on climate solutions ranging from technology-led adaptation at one end of the spectrum to radical climate transitions at the other. We found that support for market-led, regionally-led, and radical climate transitions represents a new shift toward transformational policy solutions beyond the conventional bounds of GBR governance. However, the multiple divergent perspectives suggest that more reflexive learning is required to effectively govern this critical ecosystem into the future.
Responses