Related Articles

Dynamic effects of psychiatric vulnerability, loneliness and isolation on distress during the first year of the COVID-19 pandemic

The COVID-19 pandemic’s impact on mental health is challenging to quantify because pre-existing risk, disease burden and public policy varied across individuals, time and regions. Longitudinal, within-person analyses can determine whether pandemic-related changes in social isolation impacted mental health. We analyzed time-varying associations between psychiatric vulnerability, loneliness, psychological distress and social distancing in a US-based study during the first year of the pandemic. We surveyed 3,655 participants about psychological health and COVID-19-related circumstances every 2 weeks for 6 months. We combined self-reports with regional social distancing estimates and a classifier that predicted probability of psychiatric diagnosis at enrollment. Loneliness and psychiatric vulnerability both impacted psychological distress. Loneliness and distress were also linked to social isolation and stress associated with distancing, and psychiatric vulnerability shaped how regional distancing affected loneliness across time. Public health policies should address loneliness when encouraging social distancing, particularly in those at risk for psychiatric conditions.

Group arts interventions for depression and anxiety among older adults: a systematic review and meta-analysis

In this systematic review and meta-analysis, we assessed the efficacy of group arts interventions, where individuals engage together in a shared artistic experience (for example, dance or painting), for reducing depression and anxiety among older adults (> 55 yr without dementia). Fifty controlled studies were identified via electronic databases searched to February 2024 (randomised: 42, non-randomised: 8). Thirty-nine studies were included. Thirty-six studies investigated the impact of group arts interventions on depression (n = 3,360) and ten studies investigated anxiety (n = 949). Subgroup analyses assessed whether participant, contextual, intervention and study characteristics moderated the intervention–outcome relationship. Risk of bias was assessed with appropriate tools (RoB-2, ROBINS-1). Group arts interventions were associated with a moderate reduction in depression (Cohen’s d = 0.70, 95% confidence interval (CI) = 0.54–0.87, P < 0.001) and a moderate reduction in anxiety (d = 0.76, 95% CI = 0.37–1.52, P < 0.001), although there was publication bias in the depression studies. After a trim and fill adjustment, the effect for depression remained (d = 0.42; CI = 0.35–0.50; P < 0.001). Context moderated this effect: There was a greater reduction in depression when group arts interventions were delivered in care homes (d = 1.07, 95% CI = 0.72–1.42, P < 0.001) relative to the community (d = 0.51, 95% CI = 0.32–0.70, P < 0.001). Findings indicate that group arts are an effective intervention for addressing depression and anxiety among older adults.

Leveraging large language models to assist philosophical counseling: prospective techniques, value, and challenges

Large language models (LLMs) have emerged as transformative tools with the potential to revolutionize philosophical counseling. By harnessing their advanced natural language processing and reasoning capabilities, LLMs offer innovative solutions to overcome limitations inherent in traditional counseling approaches—such as counselor scarcity, difficulties in identifying mental health issues, subjective outcome assessment, and cultural adaptation challenges. In this study, we explore cutting‐edge technical strategies—including prompt engineering, fine‐tuning, and retrieval‐augmented generation—to integrate LLMs into the counseling process. Our analysis demonstrates that LLM-assisted systems can provide counselor recommendations, streamline session evaluations, broaden service accessibility, and improve cultural adaptation. We also critically examine challenges related to user trust, data privacy, and the inherent inability of current AI systems to genuinely understand or empathize. Overall, this work presents both theoretical insights and practical guidelines for the responsible development and deployment of AI-assisted philosophical counseling practices.

Error-driven upregulation of memory representations

Learning an association does not always succeed on the first attempt. Previous studies associated increased error signals in posterior medial frontal cortex with improved memory formation. However, the neurophysiological mechanisms that facilitate post-error learning remain poorly understood. To address this gap, participants performed a feedback-based association learning task and a 1-back localizer task. Increased hemodynamic responses in posterior medial frontal cortex were found for internal and external origins of memory error evidence, and during post-error encoding success as quantified by subsequent recall of face-associated memories. A localizer-based machine learning model displayed a network of cognitive control regions, including posterior medial frontal and dorsolateral prefrontal cortices, whose activity was related to face-processing evidence in the fusiform face area. Representation strength was higher during failed recall and increased during encoding when subsequent recall succeeded. These data enhance our understanding of the neurophysiological mechanisms of adaptive learning by linking the need for learning with increased processing of the relevant stimulus category.

Responses

Your email address will not be published. Required fields are marked *