Related Articles

Progressively smaller glacier lake outburst floods despite worldwide growth in lake area

Glacier lake outburst floods (GLOFs) may originate from larger lakes as these continue to grow with ongoing glacier retreat; however, this perception remains poorly supported in available GLOF databases. Here we mapped the areas of 1,686 glacier lakes, just before they drained, across 13 glaciated mountain regions outside polar regions and examined the trends in pre-GLOF lake areas between 1990 and 2023. We found that pre-GLOF lake areas barely changed, or even decreased, regionally through time, even as the total lake area, and thus hazard potential, grew overall. This counterintuitive finding reflects limits to growing GLOF magnitudes, such as the decoupling of lakes and parent glaciers, the development of wide, low-gradient outlets or human management. Across all regions, pre-GLOF lake areas depend on a few ice-dammed lakes, which have produced ten times more reported outbursts and ten times larger outbursts than moraine- and bedrock-dammed lakes. The latter two dam types will continue to impound growing amounts of meltwater, thereby accounting for most of the overall GLOF hazard potential, while ice-dammed lakes will shrink with deglaciation. As these lake types will evolve differently in the twenty-first century, we call for customized simulations of GLOF outflows and impacts, given the growing exposure of critical infrastructure.

Arctic bacterial diversity and connectivity in the coastal margin of the Last Ice Area

Arctic climate change is leading to sea-ice attrition in the Last Ice Area along the northern coast of Canada and Greenland, but less attention has been given to the associated land-based ecosystems. Here we evaluated bacterial community structure in a hydrologically coupled cryo-ecosystem in the region: Thores Glacier, proglacial Thores Lake, and its outlet to the sea. Deep amplicon sequencing revealed that Polaromonas was ubiquitous, but differed genetically among diverse niches. Surface glacier-ice was dominated by Cyanobacteria, while the perennially ice-capped, well-mixed water column of Thores Lake had a unique assemblage of Chloroflexi, Actinobacteriota, and Planctomycetota. Species richness increased downstream, but glacier microbes were little detected in the lake, suggesting strong taxonomic sorting. Ongoing climate change and the retreat of Thores Glacier would lead to complete drainage and loss of the lake microbial ecosystem, indicating the extreme vulnerability of diverse cryohabitats and unique microbiomes in the Last Ice coastal margin.

Methane emissions from thermokarst lakes must emphasize the ice-melting impact on the Tibetan Plateau

Thermokarst lakes, serving as significant sources of methane (CH4), play a crucial role in affecting the feedback of permafrost carbon cycle to global warming. However, accurately assessing CH4 emissions from these lakes remains challenging due to limited observations during lake ice melting periods. In this study, by integrating field surveys with machine learning modeling, we offer a comprehensive assessment of present and future CH4 emissions from thermokarst lakes on the Tibetan Plateau. Our results reveal that the previously underestimated CH4 release from lake ice bubble and water storage during ice melting periods is 11.2 ± 1.6 Gg C of CH4, accounting for 17 ± 4% of the annual total release from lakes. Despite thermokarst lakes cover only 0.2% of the permafrost area, they annually emit 65.5 ± 10.0 Gg C of CH4, which offsets 6.4% of the net carbon sink in alpine grasslands on the plateau. Considering the loss of lake ice, the expansion of thermokarst lakes is projected to lead to 1.1–1.2 folds increase in CH4 emissions by 2100. Our study allows foreseeing future CH4 emissions from the rapid expanding thermokarst lakes and sheds new lights on processes controlling the carbon-climate feedback in alpine permafrost ecosystems.

Microglial mechanisms drive amyloid-β clearance in immunized patients with Alzheimer’s disease

Alzheimer’s disease (AD) therapies utilizing amyloid-β (Aβ) immunization have shown potential in clinical trials. Yet, the mechanisms driving Aβ clearance in the immunized AD brain remain unclear. Here, we use spatial transcriptomics to explore the effects of both active and passive Aβ immunization in the AD brain. We compare actively immunized patients with AD with nonimmunized patients with AD and neurologically healthy controls, identifying distinct microglial states associated with Aβ clearance. Using high-resolution spatial transcriptomics alongside single-cell RNA sequencing, we delve deeper into the transcriptional pathways involved in Aβ removal after lecanemab treatment. We uncover spatially distinct microglial responses that vary by brain region. Our analysis reveals upregulation of the triggering receptor expressed on myeloid cells 2 (TREM2) and apolipoprotein E (APOE) in microglia across immunization approaches, which correlate positively with antibody responses and Aβ removal. Furthermore, we show that complement signaling in brain myeloid cells contributes to Aβ clearance after immunization. These findings provide new insights into the transcriptional mechanisms orchestrating Aβ removal and shed light on the role of microglia in immune-mediated Aβ clearance. Importantly, our work uncovers potential molecular targets that could enhance Aβ-targeted immunotherapies, offering new avenues for developing more effective therapeutic strategies to combat AD.

Identification of yellow lake pigments in paintings by Rembrandt and Vermeer: the state of the art revisited

The identification of natural yellow organic pigments known as yellow lakes presents an analytical challenge, due to their structural complexity, poor stability, the need for invasive sampling, and the capabilities of the existing analytical methods and instrumentation. In recent years, high-performance liquid chromatography, quadrupole time-of-flight mass spectrometry (HPLC-qToF-MS) has emerged as a powerful tool for museum scientists, allowing for high resolution, molecular level analysis of organic colorants in microscopic samples. To achieve deep, rich shadows in his paintings, Rembrandt mixed and layered translucent red and yellow lakes with opaque pigments; however, the composition of the yellow lakes had not been identified until the present study. To create dark translucent greens in the backgrounds of his compositions, Vermeer also chose yellow lake pigments mixed with blue and green. These yellow lakes have been difficult to identify until now. In this study, HPLC-qToF-MS was used to identify yellow lakes in two paintings by Vermeer and one by Rembrandt, to better understand the original appearance of the paint passages where these lakes were used, and to gain further insight into these artists’ techniques. In Aristotle with a Bust of Homer, several flavonoids and an anthraquinone from a Rhamnus species were identified in a painting by Rembrandt. To the best of our knowledge, this is the first time that Rhamnus has been unequivocally identified in a 17th-century Dutch painting, despite being widely discussed in the historical literature. The analysis of samples from Vermeer’s Mistress and Maid and Study of a Young Woman detected a yellow lake based on weld, which was mixed with indigo and a copper-based green pigment. These pigment mixtures were originally dark translucent green, which have now discolored to brownish greens.

Responses

Your email address will not be published. Required fields are marked *