Related Articles

Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome

A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential. Disruption of ion channel trafficking is one of the main sources of LQTS. We review some molecular pathways and mechanisms involved in cardiac ion channel trafficking. We highlight the importance of channelosomes and other macromolecular complexes in helping to maintain normal cardiac electrical function, and the defects that prolong the QT interval as a consequence of variants or the effect of drugs. We examine the concept of “interactome mapping” and illustrate by example the multiple protein–protein interactions an ion channel may undergo throughout its lifetime. We also comment on how mapping the interactomes of the different cardiac ion channels may help advance research into LQTS and other cardiac diseases. Finally, we discuss how using human induced pluripotent stem cell technology to model ion channel trafficking and its defects may help accelerate drug discovery toward preventing life-threatening arrhythmias. Advancements in understanding ion channel trafficking and channelosome complexities are needed to find novel therapeutic targets, predict drug interactions, and enhance the overall management and treatment of LQTS patients.

TMEM41B is an endoplasmic reticulum Ca2+ release channel maintaining naive T cell quiescence and responsiveness

In mammalian cells, endoplasmic reticulum (ER) passively releases Ca2+ under steady state, but channels involved remain elusive. Here, we report that TMEM41B, an ER-resident membrane protein critical for autophagy, lipid metabolism, and viral infection, functions as an ER Ca2+ release channel. Biochemically, purified recombinant TMEM41B forms a concentration-dependent Ca2+ channel in single-channel electrophysiology assays. Cellularly, TMEM41B deficiency causes ER Ca2+ overload, while overexpression of TMEM41B depletes ER Ca2+. Immunologically, ER Ca2+ overload leads to upregulation of IL-2 and IL-7 receptors in naive T cells, which in turn increases basal signaling of JAK-STAT, AKT-mTOR, and MAPK pathways. This dysregulation drives TMEM41B-deficient naive T cells into a metabolically activated yet immunologically naive state. ER Ca2+ overload also downregulates CD5, lowering the activation threshold of TMEM41B-deficient T cells and leading to heightened T cell responses during infections. In summary, we identify TMEM41B as a concentration-dependent ER Ca2+ release channel, revealing an unexpected role of ER Ca2+ in naive T cell quiescence and responsiveness.

Human-structure and human-structure-human interaction in electro-quasistatic regime

Augmented living equipped with electronic devices requires widespread connectivity and a low-loss communication medium for humans to interact with ambient technologies. However, traditional radiative radio frequency-based communications require wireless pairing to ensure specificity during information exchange, and with their broadcasting nature, these incur energy absorption from the surroundings. Recent advancements in electroquasistatic body-coupled communication have shown great promise by utilizing conductive objects like the human body as a communication medium. Here we propose a fundamental set of modalities of non-radiative interaction by guiding electroquasistatic signals through conductive structures between humans and surrounding electronic devices. Our approach offers pairing-free communication specificity and lower path loss during touch. Here, we propose two modalities: Human-Structure Interaction and Human-Structure Human Interaction with wearable devices. We validate our theoretical understanding with numerical electromagnetic simulations and experiments to show the feasibility of the proposed approach. A demonstration of the real-time transfer of an audio signal employing an human body communications-based Human-Structure Interaction link is presented to highlight the practical impact of this work. The proposed techniques can potentially influence Human-Machine Interaction research, including the development of assistive technology for augmented living and personalized healthcare.

Cryo-EM structure of the human THIK-1 K2P K+ channel reveals a lower Y gate regulated by lipids and anesthetics

THIK-1 (KCNK13) is a halothane-inhibited and anionic-lipid-activated two-pore domain (K2P) K+ channel implicated in microglial activation and neuroinflammation, and a current target for the treatment of neurodegenerative disorders, for example Alzheimer’s disease and amyothropic lateral sclerosis (ALS). However, compared to other K2P channels, little is known about the structural and functional properties of THIK-1. Here we present a 3.16-Å-resolution cryo-EM structure of human THIK-1 that reveals several distinct features, in particular, a tyrosine in M4 that contributes to a lower ‘Y gate’ that opens upon activation by physiologically relevant G-protein-coupled receptor and lipid signaling pathways. We demonstrate that linoleic acid bound within a modulatory pocket adjacent to the filter influences channel activity, and that halothane inhibition involves a binding site within the inner cavity, both resulting in conformational changes to the Y gate. Finally, the extracellular cap domain contains positively charged residues that line the ion exit pathway and contribute to the distinct biophysical properties of this channel. Overall, our results provide structural insights into THIK-1 function and identify distinct regulatory sites that expand its potential as a drug target for the modulation of microglial function.

Exploring metabolic reprogramming in esophageal cancer: the role of key enzymes in glucose, amino acid, and nucleotide pathways and targeted therapies

Esophageal cancer (EC) is one of the most common malignancies worldwide with the character of poor prognosis and high mortality. Despite significant advancements have been achieved in elucidating the molecular mechanisms of EC, for example, in the discovery of new biomarkers and metabolic pathways, effective treatment options for patients with advanced EC are still limited. Metabolic heterogeneity in EC is a critical factor contributing to poor clinical outcomes. This heterogeneity arises from the complex interplay between the tumor microenvironment and genetic factors of tumor cells, which drives significant metabolic alterations in EC, a process known as metabolic reprogramming. Understanding the mechanisms of metabolic reprogramming is essential for developing new antitumor therapies and improving treatment outcomes. Targeting the distinct metabolic alterations in EC could enable more precise and effective therapies. In this review, we explore the complex metabolic changes in glucose, amino acid, and nucleotide metabolism during the progression of EC, and how these changes drive unique nutritional demands in cancer cells. We also evaluate potential therapies targeting key metabolic enzymes and their clinical applicability. Our work will contribute to enhancing knowledge of metabolic reprogramming in EC and provide new insights and approaches for the clinical treatment of EC.

Responses

Your email address will not be published. Required fields are marked *