Related Articles

Multi-country evidence on societal factors to include in energy transition modelling

Integrated assessment and energy system models are challenged to account for societal transformation dynamics, but empirical evidence is lacking on which factors to incorporate, how and to what extent this would improve the relevance of modelled pathways. Here we include six societal factors related to infrastructure dynamics, actors and decision-making, and social and institutional context into an open-source simulation model of the national power system transition. We apply this model in 31 European countries and, using hindcasting (1990–2019), quantify which societal factors improved the modelled pathways. We find that, if well-chosen and in most cases, incorporating societal factors can improve the hindcasting performance by up to 27% for modelled installed capacity of individual technologies. Public acceptance, investment risks and infrastructure lockin contribute the most to model performance improvement. Our study paves the way to a systematic and objective selection of societal factors to be included in energy transition modelling.

Parallel scaling of elite wealth in ancient Roman and modern cities with implications for understanding urban inequality

Rapid urbanization and rising inequality are pressing global concerns, yet inequality is an ancient trait of city life that may be intrinsically connected to urbanism itself. Here we investigate how elite wealth scales with urban population size across culture and time by analyzing ancient Roman and modern cities. Using Bayesian models to address archeological uncertainties, we uncovered a consistent correlation between population size and physical expressions of elite wealth in urban spaces. These patterns suggest the presence of an ancient, enduring mechanism underlying urban inequality. Supported by an agent-based network simulation and informed by the settlement scaling theory, we propose that the observed patterns arise from common preferential attachment in social networks—a simple, yet powerful, driver of unequal access to interaction potential. Our findings open up new directions in urban scaling research and underscore the importance of understanding long-term urban dynamics to chart a course toward a fairer urban future.

Brine management with zero and minimal liquid discharge

Zero liquid discharge (ZLD) and minimal liquid discharge (MLD) are brine management approaches that aim to reduce the environmental impacts of brine discharge and recover water for reuse. ZLD maximizes water recovery and avoids the needs for brine disposal, but is expensive and energy-intensive. MLD (which reduces the brine volume and recovers some water) has been proposed as a practical and cost-effective alternative to ZLD, but brine disposal is needed. In this Review, we examine the concepts, technologies and industrial applications of ZLD and MLD. These brine management strategies have current and potential applications in the desalination, energy, mining and semiconductor industries, all of which produce large volumes of brine. Brine concentration and crystallization in ZLD and MLD often rely on mechanical vapour compression and thermal crystallizers, which are effective but energy-intensive. Novel engineered systems for brine volume reduction and crystallization are under active development to achieve MLD and/or ZLD. These emerging systems, such as membrane distillation, electrodialytic crystallization and solvent extraction desalination, still face challenges to outcompete mechanical vapour compression and thermal crystallizers, underscoring the critical need to maximize the full potential of reverse osmosis to attain ultrahigh water recovery. Brine valorization has potential to partially offset the cost of ZLD and MLD, provided that resource recovery can be integrated into treatment trains economically and in accordance with regulations.

Collective quantum enhancement in critical quantum sensing

Critical systems represent a valuable resource in quantum sensing and metrology. Critical quantum sensing (CQS) protocols can be realized using finite-component phase transitions, where criticality arises from the rescaling of system parameters rather than the thermodynamic limit. Here, we show that a collective quantum advantage can be achieved in a multipartite CQS protocol using a chain of parametrically coupled critical resonators in the weak-nonlinearity limit. We derive analytical solutions for the low-energy spectrum of this unconventional quantum many-body system, which is composed of locally critical elements. We then assess the scaling of the quantum Fisher information with respect to fundamental resources. We demonstrate that the coupled chain outperforms an equivalent ensemble of independent critical sensors, achieving quadratic scaling in the number of resonators. Finally, we show that even with finite Kerr nonlinearity or Markovian dissipation, the critical chain retains its advantage, making it relevant for implementing quantum sensors with current microwave superconducting technologies.

Bank lending and environmental quality in Gulf Cooperation Council countries

To achieve economies with net-zero carbon emissions, it is essential to develop a robust green financial intermediary channel. This study seeks empirical evidence on how domestic bank lending to sovereign and private sectors in Gulf Cooperation Council (GCC) countries impacts carbon dioxide and greenhouse gas emissions. We employ PMG-ARDL model to panel data comprising six countries in GCC over twenty years for carbon dioxide emissions and nineteen years for greenhouse gas emissions. Our findings reveal a long-term positive impact of both bank lending variables on carbon dioxide and greenhouse gas emissions. In addition, lending to the government shows a negative short-term effect on greenhouse gas emissions. The cross-country results demonstrate the presence of a long-run effect of explanatory variables on both types of emissions, except for greenhouse gas in Saudi Arabia. The sort-term impact of the explanatory variables on carbon dioxide and greenhouse gas emissions is quite diverse. Not only do these effects differ across countries, but some variables have opposing effects on the two types of emissions within a single country. The findings of this study present a new perspective for GCC economies: neglecting total greenhouse gas emissions and concentrating solely on carbon dioxide emissions means missing critical information for devising effective strategies to combat threats of environmental degradation and achieve net-zero goals.

Responses

Your email address will not be published. Required fields are marked *