Related Articles

Maternal effects in the model system Daphnia: the ecological past meets the epigenetic future

Maternal effects have been shown to play influential roles in many evolutionary and ecological processes. However, understanding how environmental stimuli induce within-generation responses that transverse across generations remains elusive, particularly when attempting to segregate confounding effects from offspring genotypes. This review synthesizes literature regarding resource- and predation-driven maternal effects in the model system Daphnia, detailing how the maternal generation responds to the environmental stimuli and the maternal effects seen in the offspring generation(s). Our goal is to demonstrate the value of Daphnia as a model system by showing how general principles of maternal effects emerge from studies on this system. By integrating the results across different types of biotic drivers of maternal effects, we identified broadly applicable shared characteristics: 1. Many, but not all, maternal effects involve offspring size, influencing resistance to starvation, infection, predation, and toxins. 2. Maternal effects manifest more strongly when the offspring’s environment is poor. 3. Strong within-generation responses are typically associated with strong across-generation responses. 4. The timing of the maternal stress matters and can raise or lower the magnitude of the effect on the offspring’s phenotype. 5. Embryonic exposure effects could be mistaken for maternal effects. We outline questions to prioritize for future research and discuss the possibilities for integration of ecologically relevant studies of maternal effects in natural populations with the molecular mechanisms that make them possible, specifically by addressing genetic variation and incorporating information on epigenetics. These small crustaceans can unravel how and why non-genetic information gets passed to future generations.

Generation of live mice from haploid ESCs with germline-DMR deletions or switch

Genomic imprinting is required for sexual reproduction and embryonic development of mammals, in which, differentially methylated regions (DMRs) regulate the parent-specific monoallelic expression of imprinted genes. Numerous studies on imprinted genes have highlighted their critical roles in development. However, what imprinting network is essential for development is still unclear. Here, we establish a stepwise system to reconstruct a development-related imprinting network, in which diploid embryonic stem cells (ESCs) are derived by fusing between parthenogenetic (PG)- and androgenetic (AG)-haploid embryonic stem cells (haESCs) with different DMR deletions (termed Ha-Ha-fusion system), followed by tetraploid complementation to produce all-haESC fetuses. Diploid ESCs fused between PG-haESCs carrying 8 maternally-derived DMR deletions and AG-haESCs with 2 paternally-derived DMR deletions give rise to live pups efficiently, among which, one lives to weaning. Strikingly, diploid ESCs derived from the fusion of PG-haESCs with 7 maternal DMR deletions and AG-haESCs with 2 paternal DMR deletions and maternal Snrpn-DMR deletion also support full-term embryonic development. Moreover, embryos reconstructed by injection of AG-haESCs with hypomethylated H19-DMR into oocytes with H19-DMR deletion develop into live mice sustaining inverted allelic gene expression. Together, our findings indicate that restoration of monoallelic expression of 10 imprinted regions is adequate for the full-term development of all-haESC pups, and it works irrespective of their parental origins. Meanwhile, Ha-Ha-fusion system provides a useful tool for deciphering imprinting regulation networks during embryonic development.

No evidence of positive causal effects of maternal and paternal age at first birth on children’s test scores at age 10 years

Research has shown that higher maternal and paternal age is positively associated with children’s education. Debate continues as to whether these relationships are causal. This is of great interest given the postponement of first births in almost all developed countries during the twentieth century. Here we use an instrumental variable approach (Mendelian randomization) using maternal and paternal polygenic indices (PGIs) for age at first birth—while conditioning on the child’s PGI for age at first birth—to identify the causal effects of maternal and paternal age at first birth on children’s test scores based on data from the Norwegian Mother, Father and Child Cohort study. We do not find evidence of positive causal effects of both maternal and paternal age at first birth on children’s test scores at age 10 years once the children’s PGI and correlations among different PGIs are controlled for. We therefore conclude that our results do not provide evidence in favour of sociological theories that predict positive causal effects of parental age on children’s educational attainment.

Chromosomal aberrations and early mortality in a non-mammalian vertebrate: example from pressure-induced triploid Atlantic salmon

In commercial aquaculture, the production of triploid fish is currently the most practical approach to prevent maturation and farm-to-wild introgression following escapes. However, triploids often exhibit poor welfare, and the underlying mechanisms remain unclear. Inheritance issues associated with sub-optimal hydrostatic pressure treatments used to induce triploidy, or the genetic background of parental fish, have been speculated to contribute. We tested this by quantifying the frequency and type of chromosomal aberrations in Atlantic salmon subjected to a gradient of sub-optimal pressure treatments (Experiment 1) and from multiple mothers (Experiment 2). From these experiments, we genotyped a subsample of ~900 eyed eggs and all ~3300 surviving parr across ~20 microsatellites. In contrast to the low frequency of chromosomal aberrations in the diploid (no hydrostatic pressure) and triploid (full 9500 PSI treatment) controls, eyed eggs subjected to sub-optimal pressure treatments (6500–8500 PSI) had a higher incidence of chromosomal aberrations such as aneuploidy and uniparental disomy, corresponding to lower triploidization success and higher egg mortality rates. We also observed maternal effects on triploidization success and incidence of chromosomal aberrations, with certain half-sibling families exhibiting more aberrations than others. Chromosomal aberrations were rare among surviving parr, suggesting a purge of maladapted individuals during early development. This study demonstrates that sub-optimal hydrostatic pressure treatments and maternal effects not only influence the success of triploidization treatments, but may also affect the incidence of chromosomal aberrations and early mortality. The results have important implications for aquaculture breeding programs and their efforts to prevent farm-to-wild introgression.

Maternal weight during pregnancy and risk of childhood acute lymphoblastic leukemia in offspring

In addition to biological factors, maternal exposures during pregnancy can contribute to leukemogenesis in offspring. We conducted a population-based cohort study in Sweden to investigate the association between risk of acute lymphoblastic leukemia (ALL) in offspring and maternal anthropometrics during pregnancy. A total of 2,961,435 live-born singletons during 1983–2018 were followed from birth to ALL diagnosis, end of age 18, or end of 2018. 1388 children were diagnosed with ALL (55.6% boys). We observed an increased risk of ALL among daughters of overweight/obese mothers in early pregnancy [Body mass index (BMI) ≥ 25 kg/m2; Standardized incidence ratio (SIR) = 1.4, 95% CI: 1.2–1.6] compared with the risk in daughters of mothers with normal BMI. This association was not found in their sons (SIR = 1.0, 95% CI: 0.9–1.1). Similar results were found for the association between ALL and maternal BMI before delivery. We did not find an association between low or high gestational weight gain (GWG) and risk of ALL (both SIRs = 1.0) in male/female offspring. These suggest that maternal overweight/obesity are important risk factors for childhood ALL in daughters, whereas GWG is not associated with risk of ALL. Further research on this mother-daughter association may shed light on a possible sex hormone/chromosome-related etiology of ALL.

Responses

Your email address will not be published. Required fields are marked *