Related Articles
Near-field terahertz time-domain spectroscopy for in-line electrical metrology of semiconductor integration processes for memory
Monitoring electrical properties in semiconductor integration processes is crucial in identifying electrical defects that determine the reliability and performance of metal oxide semiconductor field-effect transistors. A non-destructive in-line metrology technique using terahertz (THz) waves was developed to observe electrical properties between semiconductor integration processes. By combining near-field microprobes with THz time-domain spectroscopy (TDS), sub-10 μm resolution was achieved, enabling the measurement of on-chip micro-patterns. The system was integrated into a memory production line and demonstrated consistent results with conventional destructive methods. The TDS signal correction method effectively suppressed signal variations in unwanted layers. The results of non-invasive THz TDS measurements of tungsten films deposited by three different processes were consistent with those obtained by four- point probe method. We also non-destructively detected differences in THz transmission at the gate-oxide/Si-substrate interface due to the infiltration of nitrogen species after the thermal nitridation process at nitridation temperatures ranging from 670 to 730 °C, which were consistent with the results of secondary ion mass spectrometry. Our in-line near-field THz TDS will predict electrical performance immediately after the process, allowing for rapid correction of production conditions.
Ultrasensitive photoelectric detection with room temperature extremum
Room-temperature photodetection holds pivotal significance in diverse applications such as sensing, imaging, telecommunications, and environmental remote sensing due to its simplicity, versatility, and indispensability. Although different kinds of photon and thermal detectors have been realized, high sensitivity of photodetection with room temperature extremum is not reported until now. Herein, we find evident peaks in the photoelectric response originated from the anomalous excitonic insulator phase transition in tantalum nickel selenide (Ta2NiSe5) for room-temperature optimized photodetection from visible light to terahertz ranges. Extreme sensitivity of photoconductive detector with specific detectivity (D*) of 5.3 × 1011 cm·Hz1/2·W−1 and electrical bandwidth of 360 kHz is reached in the terahertz range, which is one to two orders of magnitude improvement compared to that of the state-of-the-art room-temperature terahertz detectors. The van der Waals heterostructure of Ta2NiSe5/WS2 is further constructed to suppress the dark current at room temperature with much improved ambient D* of 4.1 × 1012 cm·Hz1/2·W−1 in the visible wavelength, rivaling that of the typical photodetectors, and superior photoelectric performance in the terahertz range compared to the photoconductor device. Our results open a new avenue for optoelectronics via excitonic insulator phase transition in broad wavelength bands and pave the way for applications in sensitive environmental and remote sensing at room temperature.
Fabrication and modulation of flexible electromagnetic metamaterials
Flexible electromagnetic metamaterials are a potential candidate for the ideal material for electromagnetic control due to their unique physical properties and structure. Flexible electromagnetic metamaterials can be designed to exhibit specific responses to electromagnetic waves within a particular frequency range. Research shows that flexible electromagnetic metamaterials exhibit significant electromagnetic control characteristics in microwave, terahertz, infrared and other frequency bands. It has a wide range of applications in the fields of electromagnetic wave absorption and stealth, antennas and microwave devices, communication information and other fields. In this review, the currently popular fabrication methods of flexible electromagnetic metamaterials are first summarized, highlighting the electromagnetic modulation capability in different frequency bands. Then, the applications of flexible electromagnetic metamaterials in four aspects, namely electromagnetic stealth, temperature modulation, electromagnetic shielding, and wearable sensors, are elaborated and summarized in detail. In addition, this review also discusses the shortcomings and limitations of flexible electromagnetic metamaterials for electromagnetic control. Finally, the conclusion and perspective of the electromagnetic properties of flexible electromagnetic metamaterials are presented.
Sky cooling for LED streetlights
Thermal management is a critical challenge for semiconductor light-emitting diodes (LEDs), as inadequate heat dissipation reduces luminous efficiency and shortens the devices’ lifespan. Thus, there is an urgent need for more effective cooling strategies to enhance the energy efficiency of LEDs. LED streetlights, which operate primarily at night and experience high chip temperatures, could benefit greatly from improved thermal management. In this study, we introduce a sky-facing radiative cooling strategy for outdoor LED streetlights, an innovative yet less explored approach for thermal management of optoelectronics. Our method employs a nanoporous polyethylene (nanoPE) material that possesses both infrared transparency and visible reflectivity. This approach enables the direct release of heat generated by the LED through a sky-facing radiative cooling channel, while also reflecting a significant portion of the light back for illumination. By incorporating nanoPE as a cover for sky-facing LED lights, we achieved a remarkable temperature reduction of 7.8 °C in controlled laboratory settings and 4.4 °C in outdoor environments. These reductions were accompanied by an efficiency improvement of approximately 5% and 4%, respectively. This enhanced efficiency translates into substantial annual energy savings, estimated at 1.9 terawatt-hours when considering the use of LED streetlights in the United States. Furthermore, this electricity saving corresponds to a reduction of approximately 1.3 million metric tons of CO2 emissions, equivalent to 0.03% of the total annual CO2 emissions by the United States in 2018.
Dynamic tuning of terahertz atomic lattice vibration via cross-scale mode coupling to nanomechanical resonance in WSe2 membranes
Nanoelectromechanical systems (NEMS) based on atomically-thin tungsten diselenide (WSe2), benefiting from the excellent material properties and the mechanical degree of freedom, offer an ideal platform for studying and exploiting dynamic strain engineering and cross-scale vibration coupling in two-dimensional (2D) crystals. However, such opportunity has remained largely unexplored for WSe2 NEMS, impeding exploration of exquisite physical processes and realization of novel device functions. Here, we demonstrate dynamic coupling between atomic lattice vibration and nanomechanical resonances in few-layer WSe2 NEMS. Using a custom-built setup capable of simultaneously detecting Raman and motional signals, we accomplish cross-scale mode coupling between the THz crystal phonon and MHz structural vibration, achieving GHz frequency tuning in the atomic lattice modes with a dynamic gauge factor of 61.9, the best among all 2D crystals reported to date. Our findings show that such 2D NEMS offer great promises for exploring cross-scale physics in atomically-thin semiconductors.
Responses