Related Articles
Retinal blood vessel diameter changes with 60-day head-down bedrest are unaffected by antioxidant nutritional cocktail
Long-term human spaceflight can lead to cardiovascular deconditioning, but little is known about how weightlessness affects microcirculation. In this study, we examined how the retinal microvessels and cerebrovascular regulation of 19 healthy male participants responded to long-term head-down bedrest (HDBR), an earth-based analog for weightlessness. In addition, we examined whether an anti-inflammatory/antioxidant cocktail could prevent the vascular changes caused by HDBR. In all study participants, we found a decrease in retinal arteriolar diameter by HDBR day 8 and an increase in retinal venular diameter by HDBR day 16. Concurrently, blood pressure at the level of the middle cerebral artery and the cerebrovascular resistance index were higher during HDBR, while cerebral blood flow velocity was lower. None of these changes were reversed in participants receiving the anti-inflammatory/antioxidant cocktail, indicating that this cocktail was insufficient to restore the microvascular and cerebral blood flow changes induced by HDBR.
Photovoltaic bioelectronics merging biology with new generation semiconductors and light in biophotovoltaics photobiomodulation and biosensing
This review covers advancements in biosensing, biophotovoltaics, and photobiomodulation, focusing on the synergistic use of light, biomaterials, cells or tissues, interfaced with photosensitive dye-sensitized, perovskite, and conjugated polymer organic semiconductors or nanoparticles. Integration of semiconductor and biological systems, using non-invasive light-probes or -stimuli for both sensing and controlling biological behavior, has led to groundbreaking applications like artificial retinas. From fusion of photovoltaics and biology, a new research field emerges: photovoltaic bioelectronics.
Transplantation of derivative retinal organoids from chemically induced pluripotent stem cells restored visual function
As an emerging type of pluripotent stem cells, chemically induced pluripotent stem cells (CiPSCs) avoid the risks of genomic disintegration by exogenous DNAs from viruses or plasmids, providing a safer stem cell source. To verify CiPSCs’ capacity to differentiate into retinal organoids (ROs), we induced CiPSCs from mouse embryonic fibroblasts by defined small-molecule compounds and successfully differentiated the CiPSCs into three-dimensional ROs, in which all major retinal cell types and retinal genes were in concordance with those in vivo. We transplanted retinal photoreceptors from ROs into the subretinal space of retinal degeneration mouse models and the cells could integrate into the host retina, establish synaptic connections, and significantly improve the visual functions of the murine models. This proof-of-concept study for the first time demonstrated that CiPSCs could differentiate into ROs with a full spectrum of retinal cell types, and provided new insights into chemical approach-based retinal regeneration for degenerative diseases.
SenMayo transcriptomic senescence panel highlights glial cells in the ageing mouse and human retina
There is a growing need to better characterise senescent cells in the CNS and retina. The recently published SenMayo gene panel was developed to identify transcriptomic signatures of senescence across multiple organ systems, but the retina was not included. While other approaches have identified senescent signatures in the retina, these have largely focused on experimental models in young animals. We therefore conducted a detailed single-cell RNA-seq analysis to identify senescent cell populations in the retina of different aged mice and compared these with five comprehensive human and mouse retina and brain transcriptome datasets. Transcriptomic signatures of senescence were most apparent in mouse and human retinal glial cells, with IL4, 13 and 10 and the AP1 pathway being the most prominent markers involved. Similar levels of transcriptional senescence were observed in the retinal glia of young and old mice, whereas the human retina showed significantly increased enrichment scores with advancing age.
Retinal morphology across the menstrual cycle: insights from the UK Biobank
Oestradiol and progesterone levels are higher in menstruating women than men of the same age, and their receptors are present in their neurosensory retina and retinal pigment epithelium. However, the impact of this hormonal environment on retinal physiology in women remains unclear. Using self-reported menstrual cycle phases as a surrogate for fluctuating hormonal levels, we investigated associations with retinovascular indices on colour fundus photograph and retinal thickness in optical coherence tomography across regularly menstruating women in the UK Biobank. We found no differences in retinal thickness across the cycle; however, vessel density, arteriolar and venular, and fractal dimension were higher in the luteal phase than follicular. The calibre of the central retinal vessels did not differ. This study suggests that the menstrual cycle phase might be associated with retinal microvasculature density in non-invasive imaging. It raises awareness for this understudied area, providing insights into neuroscience fields and epidemiological studies.
Responses