Related Articles
Power price stability and the insurance value of renewable technologies
To understand if renewables stabilize or destabilize electricity prices, we simulate European power markets as projected by the National Energy and Climate Plans for 2030 but replicating the historical variability in electricity demand, the prices of fossil fuels and weather. We propose a β-sensitivity metric, defined as the projected increase in the average annual price of electricity when the price of natural gas increases by 1 euro. We show that annual power prices spikes would be more moderate because the β-sensitivity would fall from 1.4 euros to 1 euro. Deployment of solar photovoltaic and wind technologies exceeding 30% of the 2030 target would lower it further, below 0.5 euros. Our framework shows that this stabilization of prices would produce social welfare gains, that is, we find an insurance value of renewables. Because market mechanisms do not internalize this value, we argue that it should be explicitly considered in energy policy decisions.
Management practices and manufacturing firm responses to a randomized energy audit
Increasing the efficiency of industrial energy use is widely considered important for mitigating climate change. We randomize assignment of an energy audit intervention aimed at improving energy efficiency and reducing energy expenditures of small- and medium-sized metal processing firms in Shandong Province, China, and examine impacts on energy outcomes and interactions with firms’ management practices. We find that the intervention reduced firms’ unit cost of electricity by 8% on average. Firms with more developed structured management practices showed higher rates of recommendation adoption. However, the post-intervention electricity unit cost reduction is larger in firms with less developed practices, primarily driven by a single recommendation that corrected managers’ inaccurate reporting of transformer usage at baseline, lowering their electricity costs. By closing management-associated gaps in awareness of energy expenditures, energy audit programmes may reduce a firm’s unit cost of energy but have an ambiguous impact on energy use and climate change.
Solar-driven interfacial evaporation technologies for food, energy and water
Solar-driven interfacial evaporation technologies use solar energy to heat materials that drive water evaporation. These technologies are versatile and do not require electricity, which enables their potential application across the food, energy and water nexus. In this Review, we assess the potential of solar-driven interfacial evaporation technologies in food, energy and clean-water production, in wastewater treatment, and in resource recovery. Interfacial evaporation technologies can produce up to 5.3 l m–2 h−1 of drinking water using sunlight as the energy source. Systems designed for food production in coastal regions desalinate water to irrigate crops or wash contaminated soils. Technologies are being developed to simultaneously produce both clean energy and water through interfacial evaporation and have reached up to 204 W m–2 for electricity and 2.5 l m–2 h–1 for water in separate systems. Other solar evaporation approaches or combinations of approaches could potentially use the full solar spectrum to generate multiple products (such as water, food, electricity, heating or cooling, and/or fuels). In the future, solar evaporation technologies could aid in food, energy and water provision in low-resource or rural settings that lack reliable access to these essentials, but the systems must first undergo rigorous, scaled-up field testing to understand their performance, stability and competitiveness.
Mobilizing power quality and reliability measurements for electricity equity and justice in Africa
In sub-Saharan Africa, urban electricity inequities manifesting as poor power quality and reliability (PQR) are prevalent. Yet, granular PQR data and frameworks for assessing PQR inequities and guiding equitable electricity interventions remain sparse. To address this gap, we present a conceptual framework that leverages energy justice, capability and multidimensional poverty theories alongside concepts relating to power systems to quantify PQR inequities in sub-Saharan Africa. To demonstrate our framework and using 1 year’s worth of remotely sensed PQR data from Accra, Ghana, we assessed the distributive scale of PQR inequities, explored how multidimensional poverty exacerbates these inequities and examined the impact of PQR on households’ domestic capabilities. We found wider patterns of PQR inequities and a link between poor PQR and neighbourhoods with higher multidimensional poverty. We conclude that using remotely sensed data combined with justice and capability frameworks offers a powerful method for revealing PQR inequities and driving sustainable energy transitions.
Demand-side strategies enable rapid and deep cuts in buildings and transport emissions to 2050
Decarbonization of energy-using sectors is essential for tackling climate change. We use an ensemble of global integrated assessment models to assess CO2 emissions reduction potentials in buildings and transport, accounting for system interactions. We focus on three intervention strategies with distinct emphases: reducing or changing activity, improving technological efficiency and electrifying energy end use. We find that these strategies can reduce emissions by 51–85% in buildings and 37–91% in transport by 2050 relative to a current policies scenario (ranges indicate model variability). Electrification has the largest potential for direct emissions reductions in both sectors. Interactions between the policies and measures that comprise the three strategies have a modest overall effect on mitigation potentials. However, combining different strategies is strongly beneficial from an energy system perspective as lower electricity demand reduces the need for costly supply-side investments and infrastructure.
Responses