Related Articles
Transcriptomic profiles link corticostriatal microarchitecture to genetics of neurodevelopment and neuropsychiatric risks
Many studies on macroscale organization have focused on only the cerebral cortex or striatum, leaving a large gap in the microstructural gradient of corticostriatal covariance. Here, we partitioned the striatum into seven distinct parcels and computed the microstructural covariance between each parcel and the cerebral cortex using T1-weighted/T2-weighted mapping. We found that corticostriatal microstructural covariance exhibited a microstructural gradient along the anterior-posterior axis of the striatum. The patterns of corticostriatal microstructural covariance are linked to geodesic distance and cell type-specific gene expression profiles, revealing a gradually attenuated relationship along the anterior-posterior axis of the striatum. Linking gene expression profile to corticostriatal microstructural patterns showed that the transcriptional variations in cell type-specific genes are different between the anterior and posterior striatum and suggested that anterior striatum are more enriched in psychiatric disorders. Moreover, at the genetic level, the corticostriatal microarchitecture showed a spatiotemporal trait during neurodevelopment. Finally, we identified the neural circuits from limbic and medial frontal cortex to striatum that contributes to the common neuropsychiatric disorders. Collectively, our findings reveal spatially covarying of transcriptional specializations with microarchitecture of corticostriatal covariance, highlighting the mechanisms underlying that neurodevelopmental corticostriatal circuits may be involved in neuropsychiatric disorders.
Expert consensus on the clinical strategies for orthodontic treatment with clear aligners
Clear aligner treatment is a novel technique in current orthodontic practice. Distinct from traditional fixed orthodontic appliances, clear aligners have different material features and biomechanical characteristics and treatment efficiencies, presenting new clinical challenges. Therefore, a comprehensive and systematic description of the key clinical aspects of clear aligner treatment is essential to enhance treatment efficacy and facilitate the advancement and wide adoption of this new technique. This expert consensus discusses case selection and grading of treatment difficulty, principle of clear aligner therapy, clinical procedures and potential complications, which are crucial to the clinical success of clear aligner treatment.
Expert consensus on orthodontic treatment of protrusive facial deformities
Protrusive facial deformities, characterized by the forward displacement of the teeth and/or jaws beyond the normal range, affect a considerable portion of the population. The manifestations and morphological mechanisms of protrusive facial deformities are complex and diverse, requiring orthodontists to possess a high level of theoretical knowledge and practical experience in the relevant orthodontic field. To further optimize the correction of protrusive facial deformities, this consensus proposes that the morphological mechanisms and diagnosis of protrusive facial deformities should be analyzed and judged from multiple dimensions and factors to accurately formulate treatment plans. It emphasizes the use of orthodontic strategies, including jaw growth modification, tooth extraction or non-extraction for anterior teeth retraction, and maxillofacial vertical control. These strategies aim to reduce anterior teeth and lip protrusion, increase chin prominence, harmonize nasolabial and chin-lip relationships, and improve the facial profile of patients with protrusive facial deformities. For severe skeletal protrusive facial deformities, orthodontic-orthognathic combined treatment may be suggested. This consensus summarizes the theoretical knowledge and clinical experience of numerous renowned oral experts nationwide, offering reference strategies for the correction of protrusive facial deformities.
Differentiation of anterior chamber pigment and inflammatory cells using swept-source optical coherence tomography: a cross-sectional study
We aimed to investigate the potential of anterior segment OCT (AS-OCT) in differentiating anterior chamber (AC) pigment and inflammatory cells.
Resting-state fMRI reveals altered functional connectivity associated with resilience and susceptibility to chronic social defeat stress in mouse brain
Chronic stress is a causal antecedent condition for major depressive disorder and associates with altered patterns of neural connectivity. There are nevertheless important individual differences in susceptibility to chronic stress. How functional connectivity (FC) amongst interconnected, depression-related brain regions associates with resilience and susceptibility to chronic stress is largely unknown. We used resting-state functional magnetic resonance imaging (rs-fMRI) to examine FC between established depression-related regions in susceptible (SUS) and resilient (RES) adult mice following chronic social defeat stress (CSDS). Seed-seed FC analysis revealed that the ventral dentate gyrus (vDG) exhibited the greatest number of FC group differences with other stress-related limbic brain regions. SUS mice showed greater FC between the vDG and subcortical regions compared to both control (CON) or RES groups. Whole brain vDG seed-voxel analysis supported seed-seed findings in SUS mice but also indicated significantly decreased FC between the vDG and anterior cingulate area compared to CON mice. Interestingly, RES mice exhibited enhanced FC between the vDG and anterior cingulate area compared to SUS mice. Moreover, RES mice showed greater FC between the infralimbic prefrontal cortex and the nucleus accumbens shell compared to CON mice. These findings indicate unique differences in FC patterns in phenotypically distinct SUS and RES mice that could represent a neurobiological basis for depression, anxiety, and negative-coping behaviors that are associated with exposure to chronic stress.
Responses