Related Articles
Autophagy repression by antigen and cytokines shapes mitochondrial, migration and effector machinery in CD8 T cells
Autophagy shapes CD8 T cell fate; yet the timing, triggers and targets of this process are poorly defined. Herein, we show that naive CD8 T cells have high autophagic flux, and we identify an autophagy checkpoint whereby antigen receptor engagement and inflammatory cytokines acutely repress autophagy by regulating amino acid transporter expression and intracellular amino acid delivery. Activated T cells with high levels of amino acid transporters have low autophagic flux in amino-acid-replete conditions but rapidly reinduce autophagy when amino acids are restricted. A census of proteins degraded and fueled by autophagy shows how autophagy shapes CD8 T cell proteomes. In cytotoxic T cells, dominant autophagy substrates include cytolytic effector molecules, and amino acid and glucose transporters. In naive T cells, mitophagy dominates and selective mitochondrial pruning supports the expression of molecules that coordinate T cell migration and survival. Autophagy thus differentially prunes naive and effector T cell proteomes and is dynamically repressed by antigen receptors and inflammatory cytokines to shape T cell differentiation.
Rapid growth rate responses of terrestrial bacteria to field warming on the Antarctic Peninsula
Ice-free terrestrial environments of the western Antarctic Peninsula are expanding and subject to colonization by new microorganisms and plants, which control biogeochemical cycling. Measuring growth rates of microbial populations and ecosystem carbon flux is critical for understanding how terrestrial ecosystems in Antarctica will respond to future warming. We implemented a field warming experiment in early (bare soil; +2 °C) and late (peat moss-dominated; +1.2 °C) successional glacier forefield sites on the western Antarctica Peninsula. We used quantitative stable isotope probing with H218O using intact cores in situ to determine growth rate responses of bacterial taxa to short-term (1 month) warming. Warming increased the growth rates of bacterial communities at both sites, even doubling the number of taxa exhibiting significant growth at the early site. Growth responses varied among taxa. Despite that warming induced a similar response for bacterial relative growth rates overall, the warming effect on ecosystem carbon fluxes was stronger at the early successional site—likely driven by increased activity of autotrophs which switched the ecosystem from a carbon source to a carbon sink. At the late-successional site, warming caused a significant increase in growth rate of many Alphaproteobacteria, but a weaker and opposite gross ecosystem productivity response that decreased the carbon sink—indicating that the carbon flux rates were driven more strongly by the plant communities. Such changes to bacterial growth and ecosystem carbon cycling suggest that the terrestrial Antarctic Peninsula can respond fast to increases in temperature, which can have repercussions for long-term elemental cycling and carbon storage.
Two-tiered mutualism improves survival and competitiveness of cross-feeding soil bacteria
Metabolic cross-feeding is a pervasive microbial interaction type that affects community stability and functioning and directs carbon and energy flows. The mechanisms that underlie these interactions and their association with metal/metalloid biogeochemistry, however, remain poorly understood. Here, we identified two soil bacteria, Bacillus sp. BP-3 and Delftia sp. DT-2, that engage in a two-tiered mutualism. Strain BP-3 has low utilization ability of pyruvic acid while strain DT-2 lacks hexokinase, lacks a phosphotransferase system, and is defective in glucose utilization. When strain BP-3 is grown in isolation with glucose, it releases pyruvic acid to the environment resulting in acidification and eventual self-killing. However, when strain BP-3 is grown together with strain DT-2, strain DT-2 utilizes the released pyruvic acid to meet its energy requirements, consequently rescuing strain BP-3 from pyruvic acid-induced growth inhibition. The two bacteria further enhance their collective competitiveness against other microbes by using arsenic as a weapon. Strain DT-2 reduces relatively non-toxic methylarsenate [MAs(V)] to highly toxic methylarsenite [MAs(III)], which kills or suppresses competitors, while strain BP-3 detoxifies MAs(III) by methylation to non-toxic dimethylarsenate [DMAs(V)]. These two arsenic transformations are enhanced when strains DT-2 and BP-3 are grown together. The two strains, along with their close relatives, widely co-occur in soils and their abundances increase with the soil arsenic concentration. Our results reveal that these bacterial types employ a two-tiered mutualism to ensure their collective metabolic activity and maintain their ecological competitive against other soil microbes. These findings shed light on the intricateness of bacterial interactions and their roles in ecosystem functioning.
Crosstalk between gut microbiotas and fatty acid metabolism in colorectal cancer
Colorectal cancer (CRC) is the third most common malignancy globally and the second leading cause of cancer-related mortality. Its development is a multifactorial and multistage process influenced by a dynamic interplay between gut microbiota, environmental factors, and fatty acid metabolism. Dysbiosis of intestinal microbiota and abnormalities in microbiota-associated metabolites have been implicated in colorectal carcinogenesis, highlighting the pivotal role of microbial and metabolic interactions. Fatty acid metabolism serves as a critical nexus linking dietary patterns with gut microbial activity, significantly impacting intestinal health. In CRC patients, reduced levels of short-chain fatty acids (SCFAs) and SCFA-producing bacteria have been consistently observed. Supplementation with SCFA-producing probiotics has demonstrated tumor-suppressive effects, while therapeutic strategies aimed at modulating SCFA levels have shown potential in enhancing the efficacy of radiation therapy and immunotherapy in both preclinical and clinical settings. This review explores the intricate relationship between gut microbiota, fatty acid metabolism, and CRC, offering insights into the underlying mechanisms and their potential translational applications. Understanding this interplay could pave the way for novel diagnostic, therapeutic, and preventive strategies in the management of CRC.
Continuous 1D single crystal growth with high aspect ratio by oriented aggregation of dendrite
Continuous 1D growth of crystals is among one of the long-standing goals in material science. Classical generic methods for 1D crystal growth such as guided disposition restrict side growth by external bounding, and become difficult as the aspect ratio increases. Here, we find that continuous 1D growth of crystals can be achieved during dendrite formation, where the fractal dendrite crystal growth intrinsically restricts side broadening. We induce nanoparticle alignment in a solvent system with a polymer nanoparticle dispersion. This polymer additive further enabled an oriented aggregation mechanism during dendrite growth. The integration of these two mechanisms into the dendrite growth process regulates the dendrite shape. Such aggregated mono-crystalline dendrite branches can reach an ultra high aspect ratio (over 10000:1) with uniform diameter and orientation. We show an example application of such dendrite to prepare a high aspect ratio nanowire. This pathway may be extended for general 1D crystal growth system in the future.
Responses