Related Articles
Land use conversion increases network complexity and stability of soil microbial communities in a temperate grassland
Soils harbor highly diverse microbial communities that are critical to soil health, but agriculture has caused extensive land use conversion resulting in negative effects on critical ecosystem processes. However, the responses and adaptations of microbial communities to land use conversion have not yet been understood. Here, we examined the effects of land conversion for long-term crop use on the network complexity and stability of soil microbial communities over 19 months. Despite reduced microbial biodiversity in comparison with native tallgrass prairie, conventionally tilled (CT) cropland significantly increased network complexity such as connectivity, connectance, average clustering coefficient, relative modularity, and the number of species acting at network hubs and connectors as well as resulted in greater temporal variation of complexity indices. Molecular ecological networks under CT cropland became significantly more robust and less vulnerable, overall increasing network stability. The relationship between network complexity and stability was also substantially strengthened due to land use conversion. Lastly, CT cropland decreased the number of relationships between network structure and environmental properties instead being strongly correlated to management disturbances. These results indicate that agricultural disturbance generally increases the complexity and stability of species “interactions”, possibly as a trade-off for biodiversity loss to support ecosystem function when faced with frequent agricultural disturbance.
Configural processing as an optimized strategy for robust object recognition in neural networks
Configural processing, the perception of spatial relationships among an object’s components, is crucial for object recognition, yet its teleology and underlying mechanisms remain unclear. We hypothesize that configural processing drives robust recognition under varying conditions. Using identification tasks with composite letter stimuli, we compare neural network models trained with either configural or local cues. We find that configural cues support robust generalization across geometric transformations (e.g., rotation, scaling) and novel feature sets. When both cues are available, configural cues dominate local features. Layerwise analysis reveals that sensitivity to configural cues emerges later in processing, likely enhancing robustness to pixel-level transformations. Notably, this occurs in a purely feedforward manner without recurrent computations. These findings with letter stimuli successfully extend to naturalistic face images. Our results demonstrate that configural processing emerges in a naíve network based on task contingencies, and is beneficial for robust object processing under varying viewing conditions.
Abundant water from primordial supernovae at cosmic dawn
Primordial (or population III) supernovae were the first nucleosynthetic engines in the Universe, and they forged the heavy elements required for the later formation of planets and life. Water, in particular, is thought to be crucial to the cosmic origins of life as we understand it, and recent models have shown that water can form in low-metallicity gas like that present at high redshifts. Here we present numerical simulations that show that the first water in the Universe formed in population III core-collapse and pair-instability supernovae at redshifts z ≈ 20. The primary sites of water production in these remnants are dense molecular cloud cores, which in some cases were enriched with primordial water to mass fractions that were only a factor of a few below those in the Solar System today. These dense, dusty cores are also probable candidates for protoplanetary disk formation. Besides revealing that a primary ingredient for life was already in place in the Universe 100–200 Myr after the Big Bang, our simulations show that water was probably a key constituent of the first galaxies.
Linking differences in microbial network structure with changes in coral larval settlement
Coral cover and recruitment have decreased on reefs worldwide due to climate change-related disturbances. Achieving reliable coral larval settlement under aquaculture conditions is critical for reef restoration programmes; however, this can be challenging due to the lack of reliable and universal larval settlement cues. To investigate the role of microorganisms in coral larval settlement, we undertook a settlement choice experiment with larvae of the coral Acropora tenuis and microbial biofilms grown for different periods on the reef and in aquaria. Biofilm community composition across conditioning types and time was profiled using 16S and 18S rRNA gene sequencing. Co-occurrence networks revealed that strong larval settlement correlated with diverse biofilm communities, with specific nodes in the network facilitating connections between modules comprised of low- vs high-settlement communities. Taxa associated with high-settlement communities were identified as Myxoccales sp., Granulosicoccus sp., Alcanivoraceae sp., unassigned JTB23 sp. (Gammaproteobacteria), and Pseudovibrio denitrificans. Meanwhile, taxa closely related to Reichenbachiella agariperforans, Pleurocapsa sp., Alcanivorax sp., Sneathiella limmimaris, as well as several diatom and brown algae were associated with low settlement. Our results characterise high-settlement biofilm communities and identify transitionary taxa that may develop settlement-inducing biofilms to improve coral larval settlement in aquaculture.
Photometric detection at 7.7 μm of a galaxy beyond redshift 14 with JWST/MIRI
The James Webb Space Telescope (JWST) has spectroscopically confirmed numerous galaxies at z > 10. While weak rest-frame ultraviolet emission lines have only been seen in a handful of sources, the stronger rest-frame optical emission lines are highly diagnostic and accessible at mid-infrared wavelengths with the Mid-Infrared Instrument (MIRI) of JWST. We report the photometric detection of the distant spectroscopically confirmed galaxy JADES-GS-z14-0 at (z=14.3{2}_{-0.20}^{+0.08}) with MIRI at 7.7 μm. The most plausible solution for the stellar-population properties is that this galaxy contains half a billion solar masses in stars with a strong burst of star formation in the most recent few million years. For this model, at least one-third of the flux at 7.7 μm originates from the rest-frame optical emission lines Hβ and/or [O iii]λλ4959, 5007. The inferred properties of JADES-GS-z14-0 suggest rapid mass assembly and metal enrichment during the earliest phases of galaxy formation. This work demonstrates the unique power of mid-infrared observations in understanding galaxies at the redshift frontier.
Responses